Namespaces
Variants
Actions

Difference between revisions of "Zone of normal attraction"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A domain of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993101.png" /> for which
+
<!--
 +
z0993101.png
 +
$#A+1 = 24 n = 0
 +
$#C+1 = 24 : ~/encyclopedia/old_files/data/Z099/Z.0909310 Zone of normal attraction
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993102.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993103.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993105.png" /> is a sequence of random variables and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993106.png" /> is a random variable with a [[Normal distribution|normal distribution]]. Zones of normal attraction have been studied for the case
+
A domain of the form  $  0 \leq  x \leq  \psi ( n) $
 +
for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993107.png" /></td> </tr></table>
+
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993108.png" /> is a sequence of independent, identically-distributed random variables with mathematical expectation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z0993109.png" /> and finite positive variance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931010.png" />.
+
\frac{ {\mathsf P} \{ Z _ {n} \geq  x \} }{ {\mathsf P} \{ Y \geq  x \} }
 +
  \rightarrow  1 \  \textrm{ or } \ \
 +
 
 +
\frac{ {\mathsf P} \{ Z _ {n} \leq  - x \} }{ {\mathsf P} \{ Y \leq  - x \} }
 +
  \rightarrow  1
 +
$$
 +
 
 +
as  $  n \rightarrow \infty $,
 +
where $  \{ \psi ( n) \} \uparrow \infty $,
 +
$  \{ Z _ {n} \} $
 +
is a sequence of random variables and  $  Y $
 +
is a random variable with a [[Normal distribution|normal distribution]]. Zones of normal attraction have been studied for the case
 +
 
 +
$$
 +
Z _ {n}  =
 +
\frac{1}{\sigma \sqrt n }
 +
\sum _ { j= } 1 ^ { n }  ( X _ {j} - a ) ,
 +
$$
 +
 
 +
where  $  \{ X _ {n} \} $
 +
is a sequence of independent, identically-distributed random variables with mathematical expectation $  a $
 +
and finite positive variance $  \sigma  ^ {2} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.A. Ibragimov,  Yu.V. Linnik,  "Independent and stationary sequences of random variables" , Wolters-Noordhoff  (1971)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.A. Ibragimov,  Yu.V. Linnik,  "Independent and stationary sequences of random variables" , Wolters-Noordhoff  (1971)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A rather general formulation of the problems of large deviations is as follows, [[#References|[a3]]]. Suppose that for a family of stochastic processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931011.png" /> a result of the law-of-large-numbers type holds (cf. [[Law of large numbers|Law of large numbers]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931012.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931013.png" />. Problems on large deviations of the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931014.png" /> from its most probable path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931015.png" /> for large values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931016.png" /> are concerned with the limiting behaviour as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931017.png" /> of the infinitesimal probabilities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931018.png" /> for measurable sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931019.png" /> that are at a positive distance from the non-random limiting function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931020.png" /> (in a suitable function space (space of paths)). Problems concerning the asymptotics as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931021.png" /> of expectations of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931022.png" /> also form part of large deviation theory if the main part of these expectations for large values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931023.png" /> comes from the low probability values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099310/z09931024.png" />.
+
A rather general formulation of the problems of large deviations is as follows, [[#References|[a3]]]. Suppose that for a family of stochastic processes $  \xi  ^ {a} ( t) $
 +
a result of the law-of-large-numbers type holds (cf. [[Law of large numbers|Law of large numbers]]), $  \xi  ^ {a} \rightarrow x $
 +
as $  a \rightarrow \infty $.  
 +
Problems on large deviations of the process $  \xi  ^ {a} ( t) $
 +
from its most probable path $  x( t) $
 +
for large values of $  a $
 +
are concerned with the limiting behaviour as $  a \rightarrow \infty $
 +
of the infinitesimal probabilities $  p  ^ {a} ( \xi  ^ {a} \in A ) $
 +
for measurable sets $  A $
 +
that are at a positive distance from the non-random limiting function $  x $(
 +
in a suitable function space (space of paths)). Problems concerning the asymptotics as $  a \rightarrow \infty $
 +
of expectations of the form $  {\mathsf E}  ^ {a} [ f ^ { a } ( \xi  ^ {a} )] $
 +
also form part of large deviation theory if the main part of these expectations for large values of $  a $
 +
comes from the low probability values of $  \xi  ^ {a} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.V. Petrov,  "Sums of independent random variables" , Springer  (1975)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.J. Serfling,  "Approximation theorems of mathematical statistics" , Wiley  (1980)  pp. 6, 96</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.D. [A.D. Ventsel'] Wentzell,  "Limit theorems on large deviations for Markov stochastic processes" , Kluwer  (1990)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  L. Saulis,  V.A. Statulevicius,  "Limit theorems for large deviations" , Kluwer  (1991)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.V. Petrov,  "Sums of independent random variables" , Springer  (1975)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.J. Serfling,  "Approximation theorems of mathematical statistics" , Wiley  (1980)  pp. 6, 96</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.D. [A.D. Ventsel'] Wentzell,  "Limit theorems on large deviations for Markov stochastic processes" , Kluwer  (1990)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  L. Saulis,  V.A. Statulevicius,  "Limit theorems for large deviations" , Kluwer  (1991)  (Translated from Russian)</TD></TR></table>

Revision as of 08:29, 6 June 2020


A domain of the form $ 0 \leq x \leq \psi ( n) $ for which

$$ \frac{ {\mathsf P} \{ Z _ {n} \geq x \} }{ {\mathsf P} \{ Y \geq x \} } \rightarrow 1 \ \textrm{ or } \ \ \frac{ {\mathsf P} \{ Z _ {n} \leq - x \} }{ {\mathsf P} \{ Y \leq - x \} } \rightarrow 1 $$

as $ n \rightarrow \infty $, where $ \{ \psi ( n) \} \uparrow \infty $, $ \{ Z _ {n} \} $ is a sequence of random variables and $ Y $ is a random variable with a normal distribution. Zones of normal attraction have been studied for the case

$$ Z _ {n} = \frac{1}{\sigma \sqrt n } \sum _ { j= } 1 ^ { n } ( X _ {j} - a ) , $$

where $ \{ X _ {n} \} $ is a sequence of independent, identically-distributed random variables with mathematical expectation $ a $ and finite positive variance $ \sigma ^ {2} $.

References

[1] I.A. Ibragimov, Yu.V. Linnik, "Independent and stationary sequences of random variables" , Wolters-Noordhoff (1971) (Translated from Russian)

Comments

A rather general formulation of the problems of large deviations is as follows, [a3]. Suppose that for a family of stochastic processes $ \xi ^ {a} ( t) $ a result of the law-of-large-numbers type holds (cf. Law of large numbers), $ \xi ^ {a} \rightarrow x $ as $ a \rightarrow \infty $. Problems on large deviations of the process $ \xi ^ {a} ( t) $ from its most probable path $ x( t) $ for large values of $ a $ are concerned with the limiting behaviour as $ a \rightarrow \infty $ of the infinitesimal probabilities $ p ^ {a} ( \xi ^ {a} \in A ) $ for measurable sets $ A $ that are at a positive distance from the non-random limiting function $ x $( in a suitable function space (space of paths)). Problems concerning the asymptotics as $ a \rightarrow \infty $ of expectations of the form $ {\mathsf E} ^ {a} [ f ^ { a } ( \xi ^ {a} )] $ also form part of large deviation theory if the main part of these expectations for large values of $ a $ comes from the low probability values of $ \xi ^ {a} $.

References

[a1] V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian)
[a2] R.J. Serfling, "Approximation theorems of mathematical statistics" , Wiley (1980) pp. 6, 96
[a3] A.D. [A.D. Ventsel'] Wentzell, "Limit theorems on large deviations for Markov stochastic processes" , Kluwer (1990) (Translated from Russian)
[a4] L. Saulis, V.A. Statulevicius, "Limit theorems for large deviations" , Kluwer (1991) (Translated from Russian)
How to Cite This Entry:
Zone of normal attraction. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zone_of_normal_attraction&oldid=49250
This article was adapted from an original article by V.V. Petrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article