Namespaces
Variants
Actions

Difference between revisions of "Zariski theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
z0991301.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/Z099/Z.0909130 Zariski theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''on connectivity, Zariski connectedness theorem''
 
''on connectivity, Zariski connectedness theorem''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991301.png" /> be a proper surjective [[Morphism|morphism]] of irreducible varieties, let the field of rational functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991302.png" /> be separably algebraically closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991303.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991304.png" /> be a normal point; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991305.png" /> is connected (moreover, geometrically connected) (see [[#References|[2]]]). The theorem provides a basis for the classical principle of degeneration: If the generic cycle of an algebraic system of cycles is a variety (i.e. is geometrically irreducible), then any specialization of that cycle is connected.
+
Let $  f : X \rightarrow Y $
 +
be a proper surjective [[Morphism|morphism]] of irreducible varieties, let the field of rational functions $  k ( Y ) $
 +
be separably algebraically closed in $  k ( X ) $
 +
and let $  y \in Y $
 +
be a normal point; then $  f ^ { - 1 } ( y ) $
 +
is connected (moreover, geometrically connected) (see [[#References|[2]]]). The theorem provides a basis for the classical principle of degeneration: If the generic cycle of an algebraic system of cycles is a variety (i.e. is geometrically irreducible), then any specialization of that cycle is connected.
  
A special case of the Zariski connectedness theorem is the so-called fundamental theorem of Zariski, or Zariski's birational correspondence theorem: A birational morphism of algebraic varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991306.png" /> is an open imbedding into a neighbourhood of a normal point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991307.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991308.png" /> is a finite set (see [[#References|[1]]]). In particular, a birational morphism of normal varieties which is bijective at points is an isomorphism. Another formulation of this theorem: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z0991309.png" /> be a quasi-finite separable morphism of schemes, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913010.png" /> be a quasi-compact quasi-separable scheme; then there exists a decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913012.png" /> is a finite morphism and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913013.png" /> an open imbedding .
+
A special case of the Zariski connectedness theorem is the so-called fundamental theorem of Zariski, or Zariski's birational correspondence theorem: A birational morphism of algebraic varieties $  f : X \rightarrow Y $
 +
is an open imbedding into a neighbourhood of a normal point $  y \in Y $
 +
if $  f ^ { - 1 } ( y ) $
 +
is a finite set (see [[#References|[1]]]). In particular, a birational morphism of normal varieties which is bijective at points is an isomorphism. Another formulation of this theorem: Let $  f : X \rightarrow Y $
 +
be a quasi-finite separable morphism of schemes, and let $  Y $
 +
be a quasi-compact quasi-separable scheme; then there exists a decomposition $  f = u \circ g $,  
 +
where $  u $
 +
is a finite morphism and $  g $
 +
an open imbedding .
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, "Foundations of a general theory of birational correspondences" ''Trans. Amer. Math. Soc.'' , '''53''' : 3 (1943) pp. 490–542 {{MR|0008468}} {{ZBL|0061.33004}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, "Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields" ''Mem. Amer. Math. Soc.'' , '''5''' (1951) pp. 1–90 {{MR|0041487}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique. III. Etude cohomologique des faisceaux cohérents I" ''Publ. Math. IHES'' , '''11''' (1961) {{MR|0217085}} {{MR|0163910}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique. IV. Etude locale des schémas et des morphismes des schémas IV" ''Publ. Math. IHES'' , '''32''' (1967) {{MR|0238860}} {{ZBL|0144.19904}} {{ZBL|0135.39701}} {{ZBL|0136.15901}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, "Foundations of a general theory of birational correspondences" ''Trans. Amer. Math. Soc.'' , '''53''' : 3 (1943) pp. 490–542 {{MR|0008468}} {{ZBL|0061.33004}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, "Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields" ''Mem. Amer. Math. Soc.'' , '''5''' (1951) pp. 1–90 {{MR|0041487}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique. III. Etude cohomologique des faisceaux cohérents I" ''Publ. Math. IHES'' , '''11''' (1961) {{MR|0217085}} {{MR|0163910}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique. IV. Etude locale des schémas et des morphismes des schémas IV" ''Publ. Math. IHES'' , '''32''' (1967) {{MR|0238860}} {{ZBL|0144.19904}} {{ZBL|0135.39701}} {{ZBL|0136.15901}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913014.png" /> is a proper birational morphism and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913015.png" /> is a non-singular point, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913016.png" /> is moreover linearly connected, i.e. any two points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913017.png" /> can be connected by a sequence of rational curves in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099130/z09913018.png" /> (see [[#References|[a2]]]–[[#References|[a4]]]).
+
In case $  f: X \rightarrow Y $
 +
is a proper birational morphism and $  y \in Y $
 +
is a non-singular point, $  f ^ { - 1 } ( y) $
 +
is moreover linearly connected, i.e. any two points of $  f ^ { - 1 } ( y) $
 +
can be connected by a sequence of rational curves in $  f ^ { - 1 } ( y) $(
 +
see [[#References|[a2]]]–[[#References|[a4]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Zariski, "The connectedness theorem for birational transformations" R.H. Fox (ed.) D.C. Spencer (ed.) A.W. Tucker (ed.) , ''Algebraic geometry and topology (Symp. in honor of S. Lefschetz)'' , Princeton Univ. Press (1957) pp. 182–188 {{MR|0090099}} {{ZBL|0087.35601}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. Murre, "On a connectedness theorem for a birational transformation at a simple point" ''Amer. J. Math.'' , '''80''' (1958) pp. 3–15 {{MR|0093524}} {{ZBL|0087.35602}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W.-L. Chow, "On the connectedness theorem in algebraic geometry" ''Amer. J. Math.'' , '''83''' (1959) pp. 1033–1074 {{MR|0110705}} {{ZBL|0192.26806}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Zariski, "The connectedness theorem for birational transformations" R.H. Fox (ed.) D.C. Spencer (ed.) A.W. Tucker (ed.) , ''Algebraic geometry and topology (Symp. in honor of S. Lefschetz)'' , Princeton Univ. Press (1957) pp. 182–188 {{MR|0090099}} {{ZBL|0087.35601}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.P. Murre, "On a connectedness theorem for a birational transformation at a simple point" ''Amer. J. Math.'' , '''80''' (1958) pp. 3–15 {{MR|0093524}} {{ZBL|0087.35602}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W.-L. Chow, "On the connectedness theorem in algebraic geometry" ''Amer. J. Math.'' , '''83''' (1959) pp. 1033–1074 {{MR|0110705}} {{ZBL|0192.26806}} </TD></TR></table>

Latest revision as of 08:29, 6 June 2020


on connectivity, Zariski connectedness theorem

Let $ f : X \rightarrow Y $ be a proper surjective morphism of irreducible varieties, let the field of rational functions $ k ( Y ) $ be separably algebraically closed in $ k ( X ) $ and let $ y \in Y $ be a normal point; then $ f ^ { - 1 } ( y ) $ is connected (moreover, geometrically connected) (see [2]). The theorem provides a basis for the classical principle of degeneration: If the generic cycle of an algebraic system of cycles is a variety (i.e. is geometrically irreducible), then any specialization of that cycle is connected.

A special case of the Zariski connectedness theorem is the so-called fundamental theorem of Zariski, or Zariski's birational correspondence theorem: A birational morphism of algebraic varieties $ f : X \rightarrow Y $ is an open imbedding into a neighbourhood of a normal point $ y \in Y $ if $ f ^ { - 1 } ( y ) $ is a finite set (see [1]). In particular, a birational morphism of normal varieties which is bijective at points is an isomorphism. Another formulation of this theorem: Let $ f : X \rightarrow Y $ be a quasi-finite separable morphism of schemes, and let $ Y $ be a quasi-compact quasi-separable scheme; then there exists a decomposition $ f = u \circ g $, where $ u $ is a finite morphism and $ g $ an open imbedding .

References

[1] O. Zariski, "Foundations of a general theory of birational correspondences" Trans. Amer. Math. Soc. , 53 : 3 (1943) pp. 490–542 MR0008468 Zbl 0061.33004
[2] O. Zariski, "Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields" Mem. Amer. Math. Soc. , 5 (1951) pp. 1–90 MR0041487
[3a] A. Grothendieck, "Eléments de géometrie algébrique. III. Etude cohomologique des faisceaux cohérents I" Publ. Math. IHES , 11 (1961) MR0217085 MR0163910
[3b] A. Grothendieck, "Eléments de géometrie algébrique. IV. Etude locale des schémas et des morphismes des schémas IV" Publ. Math. IHES , 32 (1967) MR0238860 Zbl 0144.19904 Zbl 0135.39701 Zbl 0136.15901

Comments

In case $ f: X \rightarrow Y $ is a proper birational morphism and $ y \in Y $ is a non-singular point, $ f ^ { - 1 } ( y) $ is moreover linearly connected, i.e. any two points of $ f ^ { - 1 } ( y) $ can be connected by a sequence of rational curves in $ f ^ { - 1 } ( y) $( see [a2][a4]).

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001
[a2] O. Zariski, "The connectedness theorem for birational transformations" R.H. Fox (ed.) D.C. Spencer (ed.) A.W. Tucker (ed.) , Algebraic geometry and topology (Symp. in honor of S. Lefschetz) , Princeton Univ. Press (1957) pp. 182–188 MR0090099 Zbl 0087.35601
[a3] J.P. Murre, "On a connectedness theorem for a birational transformation at a simple point" Amer. J. Math. , 80 (1958) pp. 3–15 MR0093524 Zbl 0087.35602
[a4] W.-L. Chow, "On the connectedness theorem in algebraic geometry" Amer. J. Math. , 83 (1959) pp. 1033–1074 MR0110705 Zbl 0192.26806
How to Cite This Entry:
Zariski theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zariski_theorem&oldid=49245
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article