Namespaces
Variants
Actions

Difference between revisions of "Young tableau"

From Encyclopedia of Mathematics
Jump to: navigation, search
(image)
(latex details)
Line 25: Line 25:
 
In Western literature the phrase Ferrers diagram is also used for a Young diagram. In the Russian literature the phrase  "Young tableau"  ( "Yunga tablitsa" ) and  "Young diagram"  ( "Yunga diagramma" ) are used precisely in the opposite way, with  "tablitsa"  referring to the pictorial representation of a partition and  "diagramma"  being a filled-in  "tablitsa" .
 
In Western literature the phrase Ferrers diagram is also used for a Young diagram. In the Russian literature the phrase  "Young tableau"  ( "Yunga tablitsa" ) and  "Young diagram"  ( "Yunga diagramma" ) are used precisely in the opposite way, with  "tablitsa"  referring to the pictorial representation of a partition and  "diagramma"  being a filled-in  "tablitsa" .
  
Let $\kappa$ denote a [[partition]] of $m$ (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910017.png" />) as well as its corresponding [[Young diagram|Young diagram]], its pictorial representation. Let $\lambda$ be a second partition of $m$. A $\kappa$-tableau of type $\lambda$ is a Young diagram $\kappa$ with its boxes filled with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910025.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910026.png" />'s, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910027.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910028.png" />'s, etc. For a semi-standard $\kappa$-tableau of type $\lambda$, the labelling of the boxes is such that the rows are non-decreasing (from left to right) and the columns are strictly increasing (from top to bottom). E.g.
+
Let $\kappa$ denote a [[partition]] of $m$ ($\kappa=(\kappa_1,\ldots,\kappa_t)$, $\kappa_i \in \{0,1,\ldots\}$, $\kappa_1+\cdots+\kappa_t=m$) as well as its corresponding [[Young diagram]], its pictorial representation. Let $\lambda$ be a second partition of $m$. A $\kappa$-tableau of type $\lambda$ is a Young diagram $\kappa$ with its boxes filled with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910025.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910026.png" />'s, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910027.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910028.png" />'s, etc. For a semi-standard $\kappa$-tableau of type $\lambda$, the labelling of the boxes is such that the rows are non-decreasing (from left to right) and the columns are strictly increasing (from top to bottom). E.g.
  
 
<pre style="font-family: monospace;color:black">
 
<pre style="font-family: monospace;color:black">
Line 51: Line 51:
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910076.png" /> is the column-stabilizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910077.png" />, i.e. the subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910078.png" /> of all permutations that leave the labels of the columns of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910079.png" /> set-wise invariant.
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910076.png" /> is the column-stabilizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910077.png" />, i.e. the subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910078.png" /> of all permutations that leave the labels of the columns of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910079.png" /> set-wise invariant.
  
The Specht module, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910080.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910081.png" /> is the submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910082.png" /> spanned by all the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910083.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910084.png" /> is the tabloid of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910086.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910087.png" />-tableau. Over a field of characteristic zero the Specht modules give precisely all the different absolutely-irreducible representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910088.png" />. By Young's rule, the number of times that the Specht module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910089.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910090.png" /> occurs (as a composition factor) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910091.png" /> is equal to the Kostka number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910092.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910093.png" /> is the [[Young symmetrizer|Young symmetrizer]] of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910094.png" />-tableau <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910095.png" />, then the Specht module defined by the underlying diagram is isomorphic to the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910096.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910097.png" />. This is also (up to isomorphism) the representation denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910098.png" /> in [[Representation of the symmetric groups|Representation of the symmetric groups]]. Cf. [[Majorization ordering|Majorization ordering]] for a number of other results involving partitions, Young diagrams and tableaux, and representations of the symmetric groups.
+
The Specht module, $[\mu]$, of $\mu$ is the submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910082.png" /> spanned by all the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910083.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910084.png" /> is the tabloid of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910086.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910087.png" />-tableau. Over a field of characteristic zero the Specht modules give precisely all the different absolutely-irreducible representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910088.png" />. By Young's rule, the number of times that the Specht module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910089.png" /> over $\mathbf{Q}$ occurs (as a composition factor) in $\rho(\kappa)$ is equal to the Kostka number $K(\kappa,\lambda)$. If $e_t$ is the [[Young symmetrizer]] of a $\mu$-tableau $t$, then the Specht module defined by the underlying diagram is isomorphic to the ideal $F[S_n]e_t$ of $F[S_n]. This is also (up to isomorphism) the representation denoted by $T_{\mu}$ in [[Representation of the symmetric groups]]. Cf. [[Majorization ordering]] for a number of other results involving partitions, Young diagrams and tableaux, and representations of the symmetric groups.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D. Knuth,  "The art of computer programming" , '''3''' , Addison-Wesley  (1973)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  D. Knuth,  "The art of computer programming" , '''3''' , Addison-Wesley  (1973)</TD></TR>
 +
</table>
  
 
{{TEX|want}}
 
{{TEX|want}}

Revision as of 20:32, 14 December 2023

of order $m$

A Young diagram of order $m$ in whose cells the different numbers $1,\ldots,m$ have been inserted in some order, e.g.

┌───┬───┬───┬───┐
│ 5 │ 7 │ 9 │ 4 │
├───┼───┼───┼───┘
│ 8 │ 2 │ 1 │    
├───┼───┴───┘    
│ 3 │            
├───┤            
│ 6 │            
└───┘ 

A Young tableau is called standard if in each row and in each column the numbers occur in increasing order. The number of all Young tableaux for a given Young diagram $t$ of order $m$ is equal to $m!$ and the number of standard Young tableaux is $$ \frac{m!}{\prod\lambda_{ij}} $$

where the product extends over all the cells $c_{ij}$ of $t$ and $\lambda_{ij}$ denotes the length of the corresponding hook.

Comments

In Western literature the phrase Ferrers diagram is also used for a Young diagram. In the Russian literature the phrase "Young tableau" ( "Yunga tablitsa" ) and "Young diagram" ( "Yunga diagramma" ) are used precisely in the opposite way, with "tablitsa" referring to the pictorial representation of a partition and "diagramma" being a filled-in "tablitsa" .

Let $\kappa$ denote a partition of $m$ ($\kappa=(\kappa_1,\ldots,\kappa_t)$, $\kappa_i \in \{0,1,\ldots\}$, $\kappa_1+\cdots+\kappa_t=m$) as well as its corresponding Young diagram, its pictorial representation. Let $\lambda$ be a second partition of $m$. A $\kappa$-tableau of type $\lambda$ is a Young diagram $\kappa$ with its boxes filled with 's, 's, etc. For a semi-standard $\kappa$-tableau of type $\lambda$, the labelling of the boxes is such that the rows are non-decreasing (from left to right) and the columns are strictly increasing (from top to bottom). E.g.

┌───┬───┬───┬───┬───┐
│ 1 │ 1 │ 1 │ 1 │ 4 │
├───┼───┼───┼───┴───┘
│ 2 │ 2 │ 3 │        
├───┼───┼───┘        
│ 3 │ 4 │            
└───┴───┘ 

is a semi-standard $(5,3,2)$-tableau of type $(4,2,2,2)$. The numbers $K(\kappa,\lambda)$ of semi-standard $\kappa$-tableaux of type $\lambda$ are called Kostka numbers.

To each partition $\mu$ of $n$, there are associated two "natural" representations of $S_n$, the symmetric group on $n$ letters: the induced representation and the Specht module . The representation is:

where is the trivial representation of and is the Young subgroup of determined by , , where if and otherwise is the subgroup of permutations on the letters .

The group acts on the set of all -tableaux by permuting the labels. Two -tableaux are equivalent if they differ by a permutation of their labels keeping the sets of indices in each row set-wise invariant. An equivalence class of -tableaux is a -tabloid. The action of on -tableaux induces an action on -tabloids, and extending this linearly over a base field gives a representation of which is evidently isomorphic to . The dimension of is . Given a -tableau , let be the following element of :

where is the column-stabilizer of , i.e. the subgroup of of all permutations that leave the labels of the columns of set-wise invariant.

The Specht module, $[\mu]$, of $\mu$ is the submodule of spanned by all the elements , where is the tabloid of and is a -tableau. Over a field of characteristic zero the Specht modules give precisely all the different absolutely-irreducible representations of . By Young's rule, the number of times that the Specht module over $\mathbf{Q}$ occurs (as a composition factor) in $\rho(\kappa)$ is equal to the Kostka number $K(\kappa,\lambda)$. If $e_t$ is the Young symmetrizer of a $\mu$-tableau $t$, then the Specht module defined by the underlying diagram is isomorphic to the ideal $F[S_n]e_t$ of $F[S_n]. This is also (up to isomorphism) the representation denoted by $T_{\mu}$ in Representation of the symmetric groups. Cf. Majorization ordering for a number of other results involving partitions, Young diagrams and tableaux, and representations of the symmetric groups.

References

[a1] D. Knuth, "The art of computer programming" , 3 , Addison-Wesley (1973)
How to Cite This Entry:
Young tableau. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Young_tableau&oldid=54277
This article was adapted from an original article by E.B. Vinberg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article