Witt ring

From Encyclopedia of Mathematics
Revision as of 22:26, 10 December 2016 by Richard Pinch (talk | contribs) (links)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

of a field , ring of types of quadratic forms over

The ring of classes of non-degenerate quadratic forms on finite-dimensional vector spaces over with the following equivalence relation: The form is equivalent to the form () if and only if the orthogonal direct sum of the forms and is isometric to the orthogonal direct sum of and for certain neutral quadratic forms and (cf. also Witt decomposition; Quadratic form). The operations of addition and multiplication in are induced by taking the orthogonal direct sum and the tensor product of forms.

Let the characteristic of be different from 2. The definition of equivalence of forms is then equivalent to the following: if and only if the anisotropic forms and which correspond to and (cf. Witt decomposition) are isometric. The equivalence class of the form is said to be its type and is denoted by . The Witt ring, or the ring of types of quadratic forms, is an associative, commutative ring with a unit element. The unit element of is the type of the form . (Here denotes the quadratic form .) The type of the zero form of zero rank, containing also all the neutral forms, serves as the zero. The type is opposite to the type .

The additive group of the ring is said to be the Witt group of the field or the group of types of quadratic forms over . The types of quadratic forms of the form , where is an element of the multiplicative group of , generate the ring . is completely determined by the following relations for the generators:

The Witt ring may be described as the ring isomorphic to the quotient ring of the integer group ring

of the group over the ideal generated by the elements

Here is the residue class of the element with respect to the subgroup .

The Witt ring can often be calculated explicitly. Thus, if is a quadratically (in particular, algebraically) closed field, then ; if is a real closed field, (the isomorphism is realized by sending the type to the signature of the form ); if is a Pythagorean field (i.e. the sum of two squares in is a square) and is not real, then ; if is a finite field, is isomorphic to either the residue ring or , depending on whether or , respectively, where is the number of elements of ; if is a complete local field and its class field has characteristic different from 2, then

An extension of defines a homomorphism of Witt rings for which . If the extension is finite and is of odd degree, is a monomorphism and if, in addition, it is a Galois extension with group , the action of can be extended to and

The general properties of a Witt ring may be described by Pfister's theorem:

1) For any field the torsion subgroup of is -primary;

2) If is a real field and is its Pythagorean closure (i.e. the smallest Pythagorean field containing ), the sequence

is exact (in addition, if , the field is Pythagorean);

3) If is the family of real closures of , the following sequence is exact:

in particular,

4) If is not a real field, the group is torsion.

A number of other results concern the multiplicative theory of forms. In particular, let be the set of types of quadratic forms on even-dimensional spaces. Then will be a two-sided ideal in , and ; the ideal will contain all zero divisors of ; the set of nilpotent elements of coincides with the set of elements of finite order of and is the Jacobson radical and the primary radical of . The ring is finite if and only if is not real while the group is finite; the ring is Noetherian if and only if the group is finite. If is not a real field, is the unique prime ideal of . If, on the contrary, is a real field, the set of prime ideals of is the disjoint union of the ideal and the families of prime ideals corresponding to orders of :

where runs through the set of prime numbers, and denotes the sign of the element for the order .

If is a ring with involution, a construction analogous to that of a Witt ring leads to the concept of the group of a Witt ring with involution.

From a broader point of view, the Witt ring (group) is one of the first examples of a -functor (cf. Algebraic -theory), which play an important role in unitary algebraic -theory.


[1] E. Witt, "Theorie der quadratischen Formen in beliebigen Körpern" J. Reine Angew. Math. , 176 (1937) pp. 31–44 Zbl 0015.05701 Zbl 62.0106.02
[2] N. Bourbaki, "Algebra" , Elements of mathematics , 1 , Addison-Wesley (1973) pp. Chapts. 1–2 (Translated from French) MR2333539 MR2327161 MR2325344 MR2284892 MR2109105 MR1994218 MR1890629 MR1728312 MR1727844 MR1727221 MR1080964 MR0979982 MR0979760 MR0979493 MR0928386 MR0682756 MR0524568 MR0573069 MR0354207 MR0360549 Zbl 05948094 Zbl 1105.18001 Zbl 1107.13002 Zbl 1107.13001 Zbl 1139.12001 Zbl 1111.00001 Zbl 1103.13003 Zbl 1103.13002 Zbl 1103.13001 Zbl 1017.12001 Zbl 1101.13300 Zbl 0902.13001 Zbl 0904.00001 Zbl 0719.12001 Zbl 0673.00001 Zbl 0666.13001 Zbl 0623.18008 Zbl 0281.00006 Zbl 0279.13001 Zbl 0238.13002
[3] S. Lang, "Algebra" , Addison-Wesley (1974) MR0783636 Zbl 0712.00001
[4] F. Lorenz, "Quadratische Formen über Körpern" , Springer (1970) MR0282955 Zbl 0211.35303
[5] O.T. O'Meara, "Introduction to quadratic forms" , Springer (1973) Zbl 0259.10018
[6] T.Y. Lam, "The algebraic theory of quadratic forms" , Benjamin (1973) MR0396410 Zbl 0259.10019
[7] J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973) MR0506372 Zbl 0292.10016


Given two vector spaces with bilinear forms , , the tensor product is the tensor product with the bilinear form defined by

How to Cite This Entry:
Witt ring. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by A.V. MikhalevA.I. NemytovV.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article