Namespaces
Variants
Actions

Wiener-Itô decomposition

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Itô–Wiener decomposition

An orthogonal decomposition of the Hilbert space of square-integrable functions on a Gaussian space. It was first proved in 1938 by N. Wiener [a6] in terms of homogeneous chaos (cf. also Wiener chaos decomposition). In 1951, K. Itô [a1] defined multiple Wiener integrals to interpret homogeneous chaos and gave a different proof of the decomposition theorem.

Take an abstract Wiener space $( H , B )$ [a3] (cf. also Wiener space, abstract). Let $\mu$ be the standard Gaussian measure on $B$. The abstract version of Wiener–Itô decomposition deals with a special orthogonal decomposition of the real Hilbert space $L ^ { 2 } ( \mu )$.

Each $h \in H$ defines a normal random variable $\tilde{h}$ on $B$ with mean $0$ and variance $| h | _ { H } ^ { 2 }$ [a3]. Let $F _ { 0 } = \mathbf{R}$. For $n \geq 1$, let $F _ { n }$ be the $L ^ { 2 } ( \mu )$-closure of the linear space spanned by $1$ and random variables of the form $\tilde { h } _ { 1 } \ldots \tilde { h } _ { k }$ with $k \leq n$ and $h _ { j } \in H$ for $1 \leq j \leq k$. Then $\{ F _ { n } \} _ { n = 0 } ^ { \infty }$ is an increasing sequence of closed subspaces of $L ^ { 2 } ( \mu )$. Let $G _ { 0 } = \mathbf{R}$ and, for $n \geq 1$, let $G_n$ be the orthogonal complement of $F _ { n-1 } $ in $F _ { n }$. The elements in $G_n$ are called homogeneous chaos of degree $n$. Obviously, the spaces $G_n$ are orthogonal. Moreover, the Hilbert space $L ^ { 2 } ( \mu )$ is the direct sum of $G_n$ for $n \geq 0$, namely, $L ^ { 2 } ( \mu ) = \sum _ { n = 0 } ^ { \infty } G _ { n }$.

Fix $n \geq 1$. To describe $G_n$ more precisely, let $P_n$ be the orthogonal projection of $L ^ { 2 } ( \mu )$ onto the space $G_n$. For $h _ { 1 } \otimes \ldots \otimes h _ { n } \in H ^ { \otimes n }$, define

\begin{equation*} \theta _ { n } ( h _ { 1 } \bigotimes \ldots \bigotimes h _ { n } ) = P _ { n } ( \tilde { h _ { 1 } } \ldots \tilde { h _ { n } } ). \end{equation*}

Then $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes^\wedge \ldots \otimes^\wedge \sim h _ { n } )$ (where $\otimes\hat{}$ denotes the symmetric tensor product) and

\begin{equation*} \left\| \theta _ { n } ( h _ { 1 } \bigotimes \ldots \bigotimes h _ { n } ) \right\| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } \left| h _ { 1 } \widehat{\bigotimes} \ldots \widehat{\bigotimes} h _ { n } \right| _ { H ^{ \bigotimes n }}. \end{equation*}

Thus, $\theta _ { n }$ extends by continuity to a continuous linear operator from $H ^{\otimes n}$ into $G_n$ and is an isometric mapping (up to the constant $\sqrt { n ! }$) from $H ^ { \widehat{\otimes} n }$ into $G_n$. Actually, $\theta _ { n }$ is surjective and so for any $\varphi \in G _ { n }$, there exists a unique $f \in H ^ { \hat{\otimes} n }$ such that $\theta _ { n } ( f ) = \varphi$ and $\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$. Therefore, for any $\varphi \in L ^ { 2 } ( \mu )$, there exists a unique sequence $\{ f _ { n } \} _ { n = 0 } ^ { \infty }$ with $f _ { n } \in H ^ { \widehat{ \otimes } n }$ such that

\begin{equation*} \varphi = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ), \end{equation*}

\begin{equation*} \| \varphi \| _ { L ^ { 2 } ( \mu ) } ^ { 2 } = \sum _ { n = 0 } ^ { \infty } n ! | f _ { n } | ^ { 2 } _ { H ^ {\bigotimes n}}. \end{equation*}

This is the abstract version of the Wiener–Itô decomposition theorem [a2], [a4], [a5].

Let $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \widehat{\otimes} n }$. Define a norm on $\Gamma ( H )$ by

\begin{equation*} \| ( f _ { 0 } , f _ { 1 } , \ldots ) \| _ { \Gamma ( H ) } = \left( \sum _ { n = 0 } ^ { \infty } n ! |f _ { n } | _ { H^{\bigotimes n} } ^ { 2 } \right) ^ { 1 / 2 }. \end{equation*}

The Hilbert space $\Gamma ( H )$ is called the Fock space of $H$ (cf. also Fock space). The spaces $\Gamma ( H )$ and $L ^ { 2 } ( \mu )$ are isomorphic under the unitary operator $\Theta$ defined by

\begin{equation*} \Theta ( f _ { 0 } , f _ { 1 } , \ldots ) = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ). \end{equation*}

Let $\{ e _ { k } : k \geq 1 \}$ be an orthonormal basis (cf. also Orthogonal basis) for $H$. For any non-negative integers $n _ { 1 } , n _ { 2 } , \dots$ such that $n _ { 1 } + n _ { 2 } + \ldots = n$, define

where $\mathcal{H} _ { k } ( x ) = ( - 1 ) ^ { n } e ^ { x ^ { 2 } / 2 } D _ { x } ^ { k } e ^ { - x ^ { 2 } / 2 }$ is the Hermite polynomial of degree $k$ (cf. also Hermite polynomials). The set $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n \}$ is an orthonormal basis for the space $G_n$ of homogeneous chaos of degree $n$. Hence the set $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ forms an orthonormal basis for $L ^ { 2 } ( \mu )$.

Consider the classical Wiener space $( C ^ { \prime } , C )$ [a3]. The Hilbert space $C ^ { \prime }$ is isomorphic to $L ^ { 2 } ( [ 0,1 ] )$ under the unitary operator $\iota( g ) = g ^ { \prime }$, $g \in C ^ { \prime }$. The standard Gaussian measure $\mu$ on $C$ is the Wiener measure and $B ( t , \omega ) = \omega ( t )$, $\omega \in C$, is a Brownian motion. For $g \in L ^ { 2 } ( [ 0,1 ] )$, the random variable $\widetilde{( \iota ^ { - 1 } g )}$ is exactly the Wiener integral $I ( g ) = \int _ { 0 } ^ { 1 } g ( t ) d B ( t )$. Let $g _ { j } \in L ^ { 2 } ( [ 0,1 ] )$, $1 \leq j \leq n$. The random variable

is a homogeneous chaos in the space $G_n$. The mapping $ { I } _ { n }$ extends by continuity to the space $L ^ { 2 } ( [ 0,1 ] ^ { n } )$. For $g \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$,

\begin{equation*} I _ { n } ( g ) = \int _ { [ 0,1 ] ^ { n } } g ( t _ { 1 } , \ldots , t _ { n } ) d B ( t _ { 1 } ) \ldots d B ( t _ { n } ), \end{equation*}

where the right-hand side is a multiple Wiener integral of order $n$ as defined by Itô in [a1] and $\| I _ { n } ( g ) \| _ { L ^{ 2} ( \mu ) } = \sqrt { n ! } | \hat{g} | _ { L ^{ 2} ( [ 0,1 ] ^ { n } )}$ (where $\hat{g}$ is the symmetrization of $g$.) For any $\varphi \in L ^ { 2 } ( \mu )$ there exists a unique sequence $\{ g _ { n } \} _ { n = 0 } ^ { \infty }$ of symmetric functions $g _ { n } \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ such that

\begin{equation*} \varphi = \sum _ { n = 0 } ^ { \infty } I _ { n } ( g _ { n } ), \end{equation*}

\begin{equation*} \| \varphi \| _ { L ^ { 2 } ( \mu ) } ^ { 2 } = \sum _ { n = 0 } ^ { \infty } n ! | g _ { n } | _ { L^2 ( [ 0,1 ] ^ { n } ) } ^ { 2 } . \end{equation*}

This is the Wiener–Itô decomposition theorem in terms of multiple Wiener integrals. An orthonormal basis for $L ^ { 2 } ( \mu )$ is given by the set

\begin{equation*} \frac { 1 } { \sqrt { n _ { 1 } ! n _ { 2 } ! \ldots } }. \end{equation*}

\begin{equation*} .\mathcal{H} _ { n _ { 1 } } \left( \int _ { 0 } ^ { 1 } e _ { 1 } ( t ) d B ( t ) \right) \mathcal{H} _ { n _ { 2 } } \left( \int _ { 0 } ^ { 1 } e _ { 2 } ( t ) d B ( t ) \right) \ldots ,\; n _ { j } \geq 0 ,\; n _ { 1 } + n _ { 2 } + \ldots = n ,\; n \geq 0, \end{equation*}

where $\{ e _ { k } : k \geq 1 \}$ is an orthonormal basis for $L ^ { 2 } ( [ 0,1 ] )$ and the integrals are Wiener integrals.

References

[a1] K. Itô, "Multiple Wiener integral" J. Math. Soc. Japan , 3 (1951) pp. 157–169
[a2] G. Kallianpur, "Stochastic filtering theory" , Springer (1980)
[a3] H.-H. Kuo, "Gaussian measures in Banach spaces" , Lecture Notes in Mathematics , 463 , Springer (1975)
[a4] H.-H. Kuo, "White noise distribution theory" , CRC (1996)
[a5] N. Obata, "White noise calculus and Fock space" , Lecture Notes in Mathematics , 1577 , Springer (1994)
[a6] N. Wiener, "The homogeneous chaos" Amer. J. Math. , 60 (1938) pp. 897–936
How to Cite This Entry:
Wiener-Itô decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wiener-It%C3%B4_decomposition&oldid=50614
This article was adapted from an original article by Hui-Hsiung Kuo (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article