Namespaces
Variants
Actions

Difference between revisions of "Weyl almost-periodic functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976801.png" /> of complex-valued functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976802.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976803.png" />, summable to degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976804.png" /> on each bounded interval of the real axis and such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976805.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976806.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976807.png" /> has a relatively-dense set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976808.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w0976809.png" />-almost-periods (cf. [[Almost-period|Almost-period]]). The class was defined by H. Weyl [[#References|[1]]]. The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768010.png" /> of Weyl almost-periodic functions is an extension of the class of [[Stepanov almost-periodic functions|Stepanov almost-periodic functions]].
+
{{TEX|done}}
 +
The class $W^p$ of complex-valued functions $f(x)$, $-\infty<x<\infty$, summable to degree $p$ on each bounded interval of the real axis and such that for every $\epsilon>0$ there is an $l=l(\epsilon,f)$ for which $f$ has a relatively-dense set $S_l^p$ of $\epsilon$-almost-periods (cf. [[Almost-period|Almost-period]]). The class was defined by H. Weyl [[#References|[1]]]. The class $W^p$ of Weyl almost-periodic functions is an extension of the class of [[Stepanov almost-periodic functions|Stepanov almost-periodic functions]].
  
 
Weyl almost-periodic functions are related to the metric
 
Weyl almost-periodic functions are related to the metric
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768011.png" /></td> </tr></table>
+
$$D_{W^p}(f,g)=\left\lbrace\lim_{l\to\infty}\sup_{-\infty<x<\infty}\frac{1}{2l}\int\limits_{x-l}^{x+l}|f(t)-g(t)|^pdt\right\rbrace^{1/p}.$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768012.png" /> is a null function in the metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768013.png" />, i.e.
+
If $\phi$ is a null function in the metric $D_{W^p}$, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768014.png" /></td> </tr></table>
+
$$\lim_{l\to\infty}\sup_x\frac{1}{2l}\int\limits_{x-l}^{x+l}|\phi(t)|^pdt=0,$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768015.png" /> is a Stepanov almost-periodic function, then
+
and $f$ is a Stepanov almost-periodic function, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$f+\phi\tag{*}$$
  
is a Weyl almost-periodic function. There also exist Weyl almost-periodic functions which cannot be represented in the form (*); cf. [[#References|[3]]].
+
is a Weyl almost-periodic function. There also exist Weyl almost-periodic functions which cannot be represented in the form \ref{*}; cf. [[#References|[3]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Weyl,  "Integralgleichungen und fastperiodische Funktionen"  ''Math. Ann.'' , '''97'''  (1927)  pp. 338–356</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.M. Levitan,  "Almost-periodic functions" , Moscow  (1953)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.M. Levitan,  V.V. Stepanov,  "Sur les fonctions presque périodiques apportenant au sens strict à la classe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768017.png" />"  ''Dokl. Akad. Nauk SSSR'' , '''22''' :  5  (1939)  pp. 220–223</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Weyl,  "Integralgleichungen und fastperiodische Funktionen"  ''Math. Ann.'' , '''97'''  (1927)  pp. 338–356</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.M. Levitan,  "Almost-periodic functions" , Moscow  (1953)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.M. Levitan,  V.V. Stepanov,  "Sur les fonctions presque périodiques apportenant au sens strict à la classe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097680/w09768017.png" />"  ''Dokl. Akad. Nauk SSSR'' , '''22''' :  5  (1939)  pp. 220–223</TD></TR></table>

Latest revision as of 13:45, 16 October 2014

The class $W^p$ of complex-valued functions $f(x)$, $-\infty<x<\infty$, summable to degree $p$ on each bounded interval of the real axis and such that for every $\epsilon>0$ there is an $l=l(\epsilon,f)$ for which $f$ has a relatively-dense set $S_l^p$ of $\epsilon$-almost-periods (cf. Almost-period). The class was defined by H. Weyl [1]. The class $W^p$ of Weyl almost-periodic functions is an extension of the class of Stepanov almost-periodic functions.

Weyl almost-periodic functions are related to the metric

$$D_{W^p}(f,g)=\left\lbrace\lim_{l\to\infty}\sup_{-\infty<x<\infty}\frac{1}{2l}\int\limits_{x-l}^{x+l}|f(t)-g(t)|^pdt\right\rbrace^{1/p}.$$

If $\phi$ is a null function in the metric $D_{W^p}$, i.e.

$$\lim_{l\to\infty}\sup_x\frac{1}{2l}\int\limits_{x-l}^{x+l}|\phi(t)|^pdt=0,$$

and $f$ is a Stepanov almost-periodic function, then

$$f+\phi\tag{*}$$

is a Weyl almost-periodic function. There also exist Weyl almost-periodic functions which cannot be represented in the form \ref{*}; cf. [3].

References

[1] H. Weyl, "Integralgleichungen und fastperiodische Funktionen" Math. Ann. , 97 (1927) pp. 338–356
[2] B.M. Levitan, "Almost-periodic functions" , Moscow (1953) (In Russian)
[3] B.M. Levitan, V.V. Stepanov, "Sur les fonctions presque périodiques apportenant au sens strict à la classe " Dokl. Akad. Nauk SSSR , 22 : 5 (1939) pp. 220–223
How to Cite This Entry:
Weyl almost-periodic functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weyl_almost-periodic_functions&oldid=33675
This article was adapted from an original article by E.A. Bredikhina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article