Namespaces
Variants
Actions

Difference between revisions of "Weierstrass elliptic functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Tex)
Line 1: Line 1:
Functions on which K. Weierstrass based his general theory of elliptic functions (cf. [[Elliptic function|Elliptic function]]), exposed in 1862 in his lectures at the University of Berlin [[#References|[1]]], [[#References|[2]]]. As distinct from the earlier structure of the theory of elliptic functions developed by A. Legendre, N.H. Abel and C.G. Jacobi, which was based on elliptic functions of the second order with two simple poles in the period parallelogram, a Weierstrass elliptic function has one second-order pole in the period parallelogram. From the theoretical point of view the theory of Weierstrass is simpler, since the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w0974501.png" />, on which it is based, and its derivative serve as elliptic functions which generate the algebraic field of elliptic functions with given primitive periods.
+
{{TEX|done}}
 +
Functions on which K. Weierstrass based his general theory of elliptic functions (cf. [[Elliptic function|Elliptic function]]), exposed in 1862 in his lectures at the University of Berlin [[#References|[1]]], [[#References|[2]]]. As distinct from the earlier structure of the theory of elliptic functions developed by A. Legendre, N.H. Abel and C.G. Jacobi, which was based on elliptic functions of the second order with two simple poles in the period parallelogram, a Weierstrass elliptic function has one second-order pole in the period parallelogram. From the theoretical point of view the theory of Weierstrass is simpler, since the function $  {\mathbf p} (z) $ , on which it is based, and its derivative serve as elliptic functions which generate the algebraic field of elliptic functions with given primitive periods.
  
The Weierstrass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w0974503.png" />-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w0974504.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w0974505.png" /> is Weierstrass' notation) for given primitive periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w0974506.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w0974507.png" />, is defined as the series
+
The Weierstrass $  {\mathbf p} $ -function $  {\mathbf p} (z) $  ( $  {\mathbf p} $  is Weierstrass' notation) for given primitive periods $  2 \omega _{1} ,\  2 \omega _{3} $ ,  $  \mathop{\rm Im}\nolimits ( \omega _{3} / \omega _{1} ) > 0 $ , is defined as the series $$ \tag{1}
 +
{\mathbf p} (z)  =  {\mathbf p} (z; \  2 \omega _{1} ,\  2 \omega _{3} )  =
 +
$$  $$
 +
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w0974508.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
\frac{1}{z ^{2}}
 +
+ \mathop{ {\sum'}} _ {m _{1} , m _{3} = - \infty
 +
} ^ {+ \infty} \left [
 +
\frac{1}{(z-2 \Omega _ {m _{1} , m _{3}} ) ^{2}
 +
}
 +
-  
 +
\frac{1}{(2 \Omega _ {m _{1} ,m _{3}} ) ^{2}}
 +
\right ]  =
 +
$$  $$
 +
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w0974509.png" /></td> </tr></table>
+
\frac{1}{z ^{2}}
 +
+ c _{2} z ^{2} + c _{4} z ^{4} + \dots ,
 +
$$ where  $  \Omega _ {m _{1} , m _{3}} = m _{1} \omega _{1} +m _{3} \omega _{3} $ , and  $  m _{1} ,\  m _{3} $  run through all integers except  $  m _{1} = m _{3} = 0 $ . The function  $  {\mathbf p} (z) $  is an even elliptic function of order 2, with a unique second-order pole with zero residue in each period parallelogram. Its derivative  $  {\mathbf p} ^ \prime  (z) $  is an odd elliptic function of order 3 with the same primitive periods; $  {\mathbf p} ^ \prime  (z) $  has simple zeros at points congruent with  $  \omega _{1} ,\  \omega _{2} = \omega _{1} + \omega _{3} ,\  \omega _{3} $ . The most important property of the function  $  {\mathbf p} (z) $  is that any elliptic function with given primitive periods  $  2 \omega _{1} ,\  2 \omega _{3} $  may be represented as a rational function of  $  {\mathbf p} (z) $  and  $  {\mathbf p} ^ \prime  (z) $ , i.e. $  {\mathbf p} (z) $  and  $  {\mathbf p} ^ \prime  (z) $  generate the algebraic field of elliptic functions with given periods. The simply-periodic trigonometric function which serves as the analogue of the function  $  {\mathbf p} (z) $  is  $  1/ \mathop{\rm sin}\nolimits ^{2} \  z $ .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745010.png" /></td> </tr></table>
+
The function  $  {\mathbf p} (z) $  satisfies the differential equation $$ \tag{2}
 +
{\mathbf p} ^ \prime2  (z)  =
 +
4 {\mathbf p} ^{3} (z)- g _{2} {\mathbf p} (z) -g _{3 } \equiv
 +
$$  $$
 +
\equiv 
 +
4 [ {\mathbf p} (z) -e _{1} ]
 +
[ {\mathbf p} (z)-e _{2} ] [ {\mathbf p} (z) -e _{3} ],  e _{1} +e _{2} +e _{3} = 0,
 +
$$ in which the modular forms $$
 +
g _{2}  =   20 c _{2}  =  60
 +
\mathop{ {\sum'}} _ {m _{1} ,m _{3} =- \infty}
 +
to {+ \infty}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745011.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745012.png" /> run through all integers except <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745013.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745014.png" /> is an even elliptic function of order 2, with a unique second-order pole with zero residue in each period parallelogram. Its derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745015.png" /> is an odd elliptic function of order 3 with the same primitive periods; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745016.png" /> has simple zeros at points congruent with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745017.png" />. The most important property of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745018.png" /> is that any elliptic function with given primitive periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745019.png" /> may be represented as a rational function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745021.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745023.png" /> generate the algebraic field of elliptic functions with given periods. The simply-periodic trigonometric function which serves as the analogue of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745024.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745025.png" />.
+
\frac{1}{(2 \Omega _ {m _{1} ,m _{3}} ) ^{4}}
 +
,
 +
$$  $$
 +
g _{3=   28c _{4}  =   140 \mathop{ {\sum'}} _ {m _{1} ,m _{3} =-
 +
\infty} ^ {+ \infty}
 +
\frac{1}{(2 \Omega _ {m _{1} ,m _{3}} ) ^{6}}
  
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745026.png" /> satisfies the differential equation
+
$$ are said to be the relative invariants and  $  e _{1} = {\mathbf p} ( \omega _{1} ) $ ,  $  e _{2} = {\mathbf p} ( \omega _{2} ) $ ,  $  e _{3} = {\mathbf p} ( \omega _{3} ) $  are said to be the irrational invariants of the function  $  {\mathbf p} (z) $ . An absolute invariant of  $  {\mathbf p} (z) $  is any rational function of  $  j = g _{2} ^{3} / g _{3} ^{2} $  or of  $  J =g _{2} ^{3} / \Delta $ , where  $  \Delta = g _{2} ^{3} - 27 g _{3} ^{2} $  is the discriminant; this invariance is with respect to modular transformations (cf. [[Modular function|Modular function]]). In applications,  $  g _{2} $  and  $  g _{3} $  are usually real; if, in addition,  $  \Delta > 0 $ , then  $  e _{1} ,\  e _{2} ,\  e _{3} $  are also real. Equation (2) shows that  $  {\mathbf p}(z) $  may be defined as the inverse of the [[Elliptic integral|elliptic integral]] of the first kind in Weierstrass normal form: $$
 +
u  =  - \int\limits _ {(z,w)} ^ \infty
 +
\frac{dz}{w}
 +
 +
w ^{2}  =  4z ^{3} -g _{2} z -g _{3} .
 +
$$ The function  $  {\mathbf p} (z) $  is a one-to-one conformal mapping of the period parallelogram onto a canonically cut two-sheet compact Riemann surface  $  F $  with branch points  $  e _{1} ,\  e _{2} ,\  e _{3} ,\  \infty $ , of genus 1; the surface  $  F $  is sometimes said to be an elliptic image. The above integral of the first kind is single-valued on the principal covering surface  $  F $  and is a uniformizing variable on  $  F $ .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745027.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
The elliptic integral of the second kind of the field of elliptic functions with given periods  $  2 \omega _{1} ,\  2 \omega _{3} $  becomes, as a result of this uniformization, the Weierstrass zeta-function  $  \zeta (z) $ , which is defined by the series $$ \tag{3}
 +
\zeta (z)  =  
 +
\frac{1}{z}
 +
+
 +
\mathop{ {\sum'}} _ {m _{1} ,m _{3} =- \infty} ^ {+ \infty}
 +
\left [
 +
\frac{1}{z-2 \Omega _ {m _{1} ,m _{3}}}
 +
+
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745028.png" /></td> </tr></table>
+
\frac{1}{2 \Omega _ {m _{1} ,m _{3}}}
 +
\right . +
 +
$$  $$
 +
+ \left .
  
in which the modular forms
+
\frac{z}{(2 \Omega _ {m _{1} ,m _{3}} ) ^{2}}
 +
\right ] .
 +
$$ The function  $  \zeta (z) $  is an odd meromorphic function and is connected with  $  {\mathbf p} (z) $  by the relation  $  \zeta ^ \prime  (z) = - {\mathbf p} (z) $ . It is not periodic, and if periods are added to its independent variable, it transforms according to  $  \zeta (z \pm 2 \omega _{i} ) = \zeta (z) \pm 2 \eta _{i} $ , where  $  \eta _{i} = \zeta ( \omega _{i} ) $ . The Legendre relation holds between  $  \omega _{1} $ ,  $  \omega _{3} $ ,  $  \eta _{1} $ ,  $  \eta _{3} $ : $$
 +
\eta _{1} \omega _{3} - \eta _{3} \omega _{1}  = 
 +
\frac{\pi i}{2}
 +
,
 +
$$ which is equivalent to a relation between complete elliptic integrals: $$
 +
EK ^ \prime  + E ^ \prime  K- KK ^ \prime    = 
 +
\frac \pi {2}
 +
.
 +
$$ Any elliptic function  $  f(z) $  with given periods  $  2 \omega _{1} ,\  2 \omega _{3} $  may be expressed in terms of  $  \zeta (z) $  by the formula of Hermite: $$ \tag{4}
 +
f(z)  =  C+ \sum _{k=1} ^ s
 +
\left [ B _{1} ^{k} \zeta (z-b _{k} )-
 +
B _{2} ^{k} \zeta ^ \prime  (z-b _{k} )\right . +
 +
$$  $$
 +
+
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745029.png" /></td> </tr></table>
+
\frac{B _{3} ^{k}}{2!}
 +
\zeta ^{\prime\prime} (z-b _{k} ) - \dots + +
 +
$$  $$
 +
+ \left .
 +
(-1) ^ {\nu _{k} -1}
 +
\frac{B _ {\nu _{k}} ^{k}}{(
 +
\nu _{k} -1)!}
 +
\zeta ^ {( \nu _{k} -1)} (z-b _{k} ) \right ] ,
 +
$$ where  $  C $  is a constant,  $  b _{1} \dots b _{s} $  is the complete system of poles of  $  f (z) $  and the numbers  $  B _{1} ^{k} \dots B _ {\nu _{k}} ^{k} $  are the coefficients of the principal part of the Laurent expansion of  $  f(z) $  in a neighbourhood of  $  b _{k} $ . The expansion (4) is the analogue of the expansion of an arbitrary rational function into partial fractions. The trigonometric function which is the analogue of the function  $  \zeta (z) $  is  $  \mathop{\rm cotan}\nolimits \  z $ .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745030.png" /></td> </tr></table>
+
The Weierstrass sigma-function  $  \sigma (z) $  is defined as the [[Infinite product|infinite product]] $$
 +
\sigma (z)  =   z \mathop{ {\prod'}} _ {m _{1} ,m _{3} =- \infty}
 +
to {+ \infty}
 +
\left ( 1 -
 +
\frac{z}{2 \Omega _ {m _{1} ,m _{3}}}
 +
\right )
 +
e ^ {z /( {2 \Omega _ {m _{1} ,m _{3}}} )+
 +
{z ^{2}} /( {8 \Omega _ {m _{1} ,m _{3}} ^{2}} )} .
 +
$$ The function  $  \sigma (z) $  is an odd entire function with zeros  $  2 \Omega _ {m _{1} , m _{3}} $ , and is connected with the functions  $  {\mathbf p} (z) $  and  $  \zeta (z) $  by the relations $$
  
are said to be the relative invariants and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745034.png" /> are said to be the irrational invariants of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745036.png" />. An absolute invariant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745038.png" /> is any rational function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745039.png" /> or of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745040.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745041.png" /> is the discriminant; this invariance is with respect to modular transformations (cf. [[Modular function|Modular function]]). In applications, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745044.png" /> are usually real; if, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745045.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745046.png" /> are also real. Equation (2) shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745047.png" /> may be defined as the inverse of the [[Elliptic integral|elliptic integral]] of the first kind in Weierstrass normal form:
+
\frac{d ^{2}  \mathop{\rm ln}\nolimits \  \sigma (z)}{dz ^{2}}
 +
  =   - {\mathbf p} (z)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745048.png" /></td> </tr></table>
+
\frac{d  \mathop{\rm ln}\nolimits \  \sigma (z)}{dz}
 +
  =   \zeta (z) .
 +
$$ It is not a doubly-periodic function; the identities $$
 +
\sigma (z+ 2 \Omega _{mn} )  =   (-1) ^ {m+n+mn}
 +
\sigma (z) e ^ {H _{mn} (z + \Omega _{mn} )} ,
 +
$$ where $$
 +
H _{mn}  =   2m \eta _{1} + 2n \eta _{3} , 
 +
\eta _{i}  =   \zeta ( \omega _{i} )  =
  
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745049.png" /> is a one-to-one conformal mapping of the period parallelogram onto a canonically cut two-sheet compact Riemann surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745050.png" /> with branch points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745051.png" />, of genus 1; the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745052.png" /> is sometimes said to be an elliptic image. The above integral of the first kind is single-valued on the principal covering surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745053.png" /> and is a uniformizing variable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745054.png" />.
+
\frac{\sigma ^ \prime  ( \omega _{i} )}{\sigma ( \omega _{i} )}
 +
,
 +
$$ apply.
  
The elliptic integral of the second kind of the field of elliptic functions with given periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745055.png" /> becomes, as a result of this uniformization, the Weierstrass zeta-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745056.png" />, which is defined by the series
+
An arbitrary elliptic function  $  f(z) $  with periods $  2 \omega _{1} ,\  2 \omega _{3} $  can be expressed in terms of  $  \sigma (z) $  as: $$
 +
f(z)  =   C
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745057.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
\frac{\sigma (z-a _{1} ) \dots \sigma (z-a _{s} )}{\sigma (z-b _{1} ) \dots \sigma (z-b _{s} )}
 +
,
 +
$$ where  $  C $  is a constant and  $  a _{1} \dots a _{s} $ ,  $  b _{1} \dots b _{s} $  are the complete system of zeros and poles of  $  f (z) $ . The trigonometric function which is the analogue of the function  $  \sigma (z) $  is  $  \mathop{\rm sin}\nolimits \  z $ .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745058.png" /></td> </tr></table>
+
The following indexed sigma-functions are also important in Weierstrass' theory: $$
 +
\sigma _{i} (z)  =
  
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745059.png" /> is an odd meromorphic function and is connected with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745060.png" /> by the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745061.png" />. It is not periodic, and if periods are added to its independent variable, it transforms according to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745062.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745063.png" />. The Legendre relation holds between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745067.png" />:
+
\frac{\sigma (z+ \omega _{i} )}{\sigma ( \omega _{i} )}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745068.png" /></td> </tr></table>
+
e ^ {- \eta _{i} z} , 
 
+
i=1,\  2,\  3.
which is equivalent to a relation between complete elliptic integrals:
+
$$ The functions  $  \sigma (z) $ , $  \sigma _{1} (z) $ ,  $  \sigma _{2} (z) $ , $  \sigma _{3} (z) $  can be expressed in terms of the theta-functions (cf. [[Theta-function|Theta-function]]) $  \theta _{0} (v) $ , $  \theta _{1} (v) $ , $  \theta _{2} (v) $ , $  \theta _{3} (v) $  (cf. [[Jacobi elliptic functions|Jacobi elliptic functions]]), while the function $  {\mathbf p} (z) $  can be expressed in terms of $  \sigma (z) $ , $  \sigma _{1} (z) $ , $  \sigma _{2} (z) $ , $  \sigma _{3} (z) $ . The latter form the calculating base of Weierstrass' functions. It is also possible to obtain an explicit expression of the Weierstrass elliptic functions in terms of the Jacobi elliptic functions, e.g. in the form: $$
 
+
{\mathbf p} (z+ \omega _{3} )-e _{1}  = 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745069.png" /></td> </tr></table>
+
(e _{3} -e _{1} )  \mathop{\rm dn}\nolimits ^{2} (z \sqrt {e _{1} -e _{3}} ),
 
+
$$  $$
Any elliptic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745070.png" /> with given periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745071.png" /> may be expressed in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745072.png" /> by the formula of Hermite:
+
{\mathbf p} (z+ \omega _{3} )-e _{2}  =   (e _{3} -e sub
 
+
2 )  \mathop{\rm cn}\nolimits ^{2} (z \sqrt {e _{1} -e _{3}} ),
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745073.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$  $$
 
+
{\mathbf p} (z+ \omega _{3} )-e _{3}  =   (e _{2} -e sub
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745074.png" /></td> </tr></table>
+
3 )  \mathop{\rm sn}\nolimits ^{2} (z \sqrt {e _{1} -e _{3}} ).
 
+
$$ In applied problems the relative invariants $  g _{2} ,\  g _{3} $  are usually given. The primitive periods $  2 \omega _{1} ,\  2 \omega _{3} $  are usually computed with the aid of the absolute invariant $  J = g _{2} ^{3} / \Delta $ , which is a modular function of the ratio of the periods $  \tau = \omega _{3} / \omega _{1} $  (see also [[Modular function|Modular function]]).
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745075.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745076.png" /> is a constant, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745077.png" /> is the complete system of poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745078.png" /> and the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745079.png" /> are the coefficients of the principal part of the Laurent expansion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745080.png" /> in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745081.png" />. The expansion (4) is the analogue of the expansion of an arbitrary rational function into partial fractions. The trigonometric function which is the analogue of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745082.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745083.png" />.
 
 
 
The Weierstrass sigma-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745084.png" /> is defined as the [[Infinite product|infinite product]]
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745085.png" /></td> </tr></table>
 
 
 
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745086.png" /> is an odd entire function with zeros <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745087.png" />, and is connected with the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745088.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745089.png" /> by the relations
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745090.png" /></td> </tr></table>
 
 
 
It is not a doubly-periodic function; the identities
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745091.png" /></td> </tr></table>
 
 
 
where
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745092.png" /></td> </tr></table>
 
 
 
apply.
 
 
 
An arbitrary elliptic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745093.png" /> with periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745094.png" /> can be expressed in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745095.png" /> as:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745096.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745097.png" /> is a constant and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745098.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745099.png" /> are the complete system of zeros and poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450100.png" />. The trigonometric function which is the analogue of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450101.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450102.png" />.
 
 
 
The following indexed sigma-functions are also important in Weierstrass' theory:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450103.png" /></td> </tr></table>
 
 
 
The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450107.png" /> can be expressed in terms of the theta-functions (cf. [[Theta-function|Theta-function]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450108.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450110.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450111.png" /> (cf. [[Jacobi elliptic functions|Jacobi elliptic functions]]), while the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450112.png" /> can be expressed in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450114.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450115.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450116.png" />. The latter form the calculating base of Weierstrass' functions. It is also possible to obtain an explicit expression of the Weierstrass elliptic functions in terms of the Jacobi elliptic functions, e.g. in the form:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450117.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450118.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450119.png" /></td> </tr></table>
 
 
 
In applied problems the relative invariants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450120.png" /> are usually given. The primitive periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450121.png" /> are usually computed with the aid of the absolute invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450122.png" />, which is a modular function of the ratio of the periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w097450123.png" /> (see also [[Modular function|Modular function]]).
 
  
 
====References====
 
====References====

Revision as of 22:05, 11 December 2019

Functions on which K. Weierstrass based his general theory of elliptic functions (cf. Elliptic function), exposed in 1862 in his lectures at the University of Berlin [1], [2]. As distinct from the earlier structure of the theory of elliptic functions developed by A. Legendre, N.H. Abel and C.G. Jacobi, which was based on elliptic functions of the second order with two simple poles in the period parallelogram, a Weierstrass elliptic function has one second-order pole in the period parallelogram. From the theoretical point of view the theory of Weierstrass is simpler, since the function $ {\mathbf p} (z) $ , on which it is based, and its derivative serve as elliptic functions which generate the algebraic field of elliptic functions with given primitive periods.

The Weierstrass $ {\mathbf p} $ -function $ {\mathbf p} (z) $ ( $ {\mathbf p} $ is Weierstrass' notation) for given primitive periods $ 2 \omega _{1} ,\ 2 \omega _{3} $ , $ \mathop{\rm Im}\nolimits ( \omega _{3} / \omega _{1} ) > 0 $ , is defined as the series $$ \tag{1} {\mathbf p} (z) = {\mathbf p} (z; \ 2 \omega _{1} ,\ 2 \omega _{3} ) = $$ $$ = \frac{1}{z ^{2}} + \mathop{ {\sum'}} _ {m _{1} , m _{3} = - \infty } ^ {+ \infty} \left [ \frac{1}{(z-2 \Omega _ {m _{1} , m _{3}} ) ^{2} } - \frac{1}{(2 \Omega _ {m _{1} ,m _{3}} ) ^{2}} \right ] = $$ $$ = \frac{1}{z ^{2}} + c _{2} z ^{2} + c _{4} z ^{4} + \dots , $$ where $ \Omega _ {m _{1} , m _{3}} = m _{1} \omega _{1} +m _{3} \omega _{3} $ , and $ m _{1} ,\ m _{3} $ run through all integers except $ m _{1} = m _{3} = 0 $ . The function $ {\mathbf p} (z) $ is an even elliptic function of order 2, with a unique second-order pole with zero residue in each period parallelogram. Its derivative $ {\mathbf p} ^ \prime (z) $ is an odd elliptic function of order 3 with the same primitive periods; $ {\mathbf p} ^ \prime (z) $ has simple zeros at points congruent with $ \omega _{1} ,\ \omega _{2} = \omega _{1} + \omega _{3} ,\ \omega _{3} $ . The most important property of the function $ {\mathbf p} (z) $ is that any elliptic function with given primitive periods $ 2 \omega _{1} ,\ 2 \omega _{3} $ may be represented as a rational function of $ {\mathbf p} (z) $ and $ {\mathbf p} ^ \prime (z) $ , i.e. $ {\mathbf p} (z) $ and $ {\mathbf p} ^ \prime (z) $ generate the algebraic field of elliptic functions with given periods. The simply-periodic trigonometric function which serves as the analogue of the function $ {\mathbf p} (z) $ is $ 1/ \mathop{\rm sin}\nolimits ^{2} \ z $ .

The function $ {\mathbf p} (z) $ satisfies the differential equation $$ \tag{2} {\mathbf p} ^ \prime2 (z) = 4 {\mathbf p} ^{3} (z)- g _{2} {\mathbf p} (z) -g _{3 } \equiv $$ $$ \equiv 4 [ {\mathbf p} (z) -e _{1} ] [ {\mathbf p} (z)-e _{2} ] [ {\mathbf p} (z) -e _{3} ], e _{1} +e _{2} +e _{3} = 0, $$ in which the modular forms $$ g _{2} = 20 c _{2} = 60 \mathop{ {\sum'}} _ {m _{1} ,m _{3} =- \infty} to {+ \infty} \frac{1}{(2 \Omega _ {m _{1} ,m _{3}} ) ^{4}} , $$ $$ g _{3} = 28c _{4} = 140 \mathop{ {\sum'}} _ {m _{1} ,m _{3} =- \infty} ^ {+ \infty} \frac{1}{(2 \Omega _ {m _{1} ,m _{3}} ) ^{6}} $$ are said to be the relative invariants and $ e _{1} = {\mathbf p} ( \omega _{1} ) $ , $ e _{2} = {\mathbf p} ( \omega _{2} ) $ , $ e _{3} = {\mathbf p} ( \omega _{3} ) $ are said to be the irrational invariants of the function $ {\mathbf p} (z) $ . An absolute invariant of $ {\mathbf p} (z) $ is any rational function of $ j = g _{2} ^{3} / g _{3} ^{2} $ or of $ J =g _{2} ^{3} / \Delta $ , where $ \Delta = g _{2} ^{3} - 27 g _{3} ^{2} $ is the discriminant; this invariance is with respect to modular transformations (cf. Modular function). In applications, $ g _{2} $ and $ g _{3} $ are usually real; if, in addition, $ \Delta > 0 $ , then $ e _{1} ,\ e _{2} ,\ e _{3} $ are also real. Equation (2) shows that $ {\mathbf p}(z) $ may be defined as the inverse of the elliptic integral of the first kind in Weierstrass normal form: $$ u = - \int\limits _ {(z,w)} ^ \infty \frac{dz}{w} , w ^{2} = 4z ^{3} -g _{2} z -g _{3} . $$ The function $ {\mathbf p} (z) $ is a one-to-one conformal mapping of the period parallelogram onto a canonically cut two-sheet compact Riemann surface $ F $ with branch points $ e _{1} ,\ e _{2} ,\ e _{3} ,\ \infty $ , of genus 1; the surface $ F $ is sometimes said to be an elliptic image. The above integral of the first kind is single-valued on the principal covering surface $ F $ and is a uniformizing variable on $ F $ .

The elliptic integral of the second kind of the field of elliptic functions with given periods $ 2 \omega _{1} ,\ 2 \omega _{3} $ becomes, as a result of this uniformization, the Weierstrass zeta-function $ \zeta (z) $ , which is defined by the series $$ \tag{3} \zeta (z) = \frac{1}{z} + \mathop{ {\sum'}} _ {m _{1} ,m _{3} =- \infty} ^ {+ \infty} \left [ \frac{1}{z-2 \Omega _ {m _{1} ,m _{3}}} + \frac{1}{2 \Omega _ {m _{1} ,m _{3}}} \right . + $$ $$ + \left . \frac{z}{(2 \Omega _ {m _{1} ,m _{3}} ) ^{2}} \right ] . $$ The function $ \zeta (z) $ is an odd meromorphic function and is connected with $ {\mathbf p} (z) $ by the relation $ \zeta ^ \prime (z) = - {\mathbf p} (z) $ . It is not periodic, and if periods are added to its independent variable, it transforms according to $ \zeta (z \pm 2 \omega _{i} ) = \zeta (z) \pm 2 \eta _{i} $ , where $ \eta _{i} = \zeta ( \omega _{i} ) $ . The Legendre relation holds between $ \omega _{1} $ , $ \omega _{3} $ , $ \eta _{1} $ , $ \eta _{3} $ : $$ \eta _{1} \omega _{3} - \eta _{3} \omega _{1} = \frac{\pi i}{2} , $$ which is equivalent to a relation between complete elliptic integrals: $$ EK ^ \prime + E ^ \prime K- KK ^ \prime = \frac \pi {2} . $$ Any elliptic function $ f(z) $ with given periods $ 2 \omega _{1} ,\ 2 \omega _{3} $ may be expressed in terms of $ \zeta (z) $ by the formula of Hermite: $$ \tag{4} f(z) = C+ \sum _{k=1} ^ s \left [ B _{1} ^{k} \zeta (z-b _{k} )- B _{2} ^{k} \zeta ^ \prime (z-b _{k} )\right . + $$ $$ + \frac{B _{3} ^{k}}{2!} \zeta ^{\prime\prime} (z-b _{k} ) - \dots + + $$ $$ + \left . (-1) ^ {\nu _{k} -1} \frac{B _ {\nu _{k}} ^{k}}{( \nu _{k} -1)!} \zeta ^ {( \nu _{k} -1)} (z-b _{k} ) \right ] , $$ where $ C $ is a constant, $ b _{1} \dots b _{s} $ is the complete system of poles of $ f (z) $ and the numbers $ B _{1} ^{k} \dots B _ {\nu _{k}} ^{k} $ are the coefficients of the principal part of the Laurent expansion of $ f(z) $ in a neighbourhood of $ b _{k} $ . The expansion (4) is the analogue of the expansion of an arbitrary rational function into partial fractions. The trigonometric function which is the analogue of the function $ \zeta (z) $ is $ \mathop{\rm cotan}\nolimits \ z $ .

The Weierstrass sigma-function $ \sigma (z) $ is defined as the infinite product $$ \sigma (z) = z \mathop{ {\prod'}} _ {m _{1} ,m _{3} =- \infty} to {+ \infty} \left ( 1 - \frac{z}{2 \Omega _ {m _{1} ,m _{3}}} \right ) e ^ {z /( {2 \Omega _ {m _{1} ,m _{3}}} )+ {z ^{2}} /( {8 \Omega _ {m _{1} ,m _{3}} ^{2}} )} . $$ The function $ \sigma (z) $ is an odd entire function with zeros $ 2 \Omega _ {m _{1} , m _{3}} $ , and is connected with the functions $ {\mathbf p} (z) $ and $ \zeta (z) $ by the relations $$ \frac{d ^{2} \mathop{\rm ln}\nolimits \ \sigma (z)}{dz ^{2}} = - {\mathbf p} (z), \frac{d \mathop{\rm ln}\nolimits \ \sigma (z)}{dz} = \zeta (z) . $$ It is not a doubly-periodic function; the identities $$ \sigma (z+ 2 \Omega _{mn} ) = (-1) ^ {m+n+mn} \sigma (z) e ^ {H _{mn} (z + \Omega _{mn} )} , $$ where $$ H _{mn} = 2m \eta _{1} + 2n \eta _{3} , \eta _{i} = \zeta ( \omega _{i} ) = \frac{\sigma ^ \prime ( \omega _{i} )}{\sigma ( \omega _{i} )} , $$ apply.

An arbitrary elliptic function $ f(z) $ with periods $ 2 \omega _{1} ,\ 2 \omega _{3} $ can be expressed in terms of $ \sigma (z) $ as: $$ f(z) = C \frac{\sigma (z-a _{1} ) \dots \sigma (z-a _{s} )}{\sigma (z-b _{1} ) \dots \sigma (z-b _{s} )} , $$ where $ C $ is a constant and $ a _{1} \dots a _{s} $ , $ b _{1} \dots b _{s} $ are the complete system of zeros and poles of $ f (z) $ . The trigonometric function which is the analogue of the function $ \sigma (z) $ is $ \mathop{\rm sin}\nolimits \ z $ .

The following indexed sigma-functions are also important in Weierstrass' theory: $$ \sigma _{i} (z) = \frac{\sigma (z+ \omega _{i} )}{\sigma ( \omega _{i} )} e ^ {- \eta _{i} z} , i=1,\ 2,\ 3. $$ The functions $ \sigma (z) $ , $ \sigma _{1} (z) $ , $ \sigma _{2} (z) $ , $ \sigma _{3} (z) $ can be expressed in terms of the theta-functions (cf. Theta-function) $ \theta _{0} (v) $ , $ \theta _{1} (v) $ , $ \theta _{2} (v) $ , $ \theta _{3} (v) $ (cf. Jacobi elliptic functions), while the function $ {\mathbf p} (z) $ can be expressed in terms of $ \sigma (z) $ , $ \sigma _{1} (z) $ , $ \sigma _{2} (z) $ , $ \sigma _{3} (z) $ . The latter form the calculating base of Weierstrass' functions. It is also possible to obtain an explicit expression of the Weierstrass elliptic functions in terms of the Jacobi elliptic functions, e.g. in the form: $$ {\mathbf p} (z+ \omega _{3} )-e _{1} = (e _{3} -e _{1} ) \mathop{\rm dn}\nolimits ^{2} (z \sqrt {e _{1} -e _{3}} ), $$ $$ {\mathbf p} (z+ \omega _{3} )-e _{2} = (e _{3} -e sub 2 ) \mathop{\rm cn}\nolimits ^{2} (z \sqrt {e _{1} -e _{3}} ), $$ $$ {\mathbf p} (z+ \omega _{3} )-e _{3} = (e _{2} -e sub 3 ) \mathop{\rm sn}\nolimits ^{2} (z \sqrt {e _{1} -e _{3}} ). $$ In applied problems the relative invariants $ g _{2} ,\ g _{3} $ are usually given. The primitive periods $ 2 \omega _{1} ,\ 2 \omega _{3} $ are usually computed with the aid of the absolute invariant $ J = g _{2} ^{3} / \Delta $ , which is a modular function of the ratio of the periods $ \tau = \omega _{3} / \omega _{1} $ (see also Modular function).

References

[1] K. Weierstrass, "Math. Werke" , 1–2 , Mayer & Müller (1894–1895)
[2] H.A. Schwarz, "Formeln und Lehrsätze zum Gebrauche der elliptischen Funktionen" , Berlin (1893)
[3] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 2 , Springer (1964) pp. Chapt.8
[4] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6
[5] N.I. Akhiezer, "Elements of the theory of elliptic functions" , Amer. Math. Soc. (1990) (Translated from Russian)


Comments

References

[a1] J. Tannéry, J. Molk, "Eléments de la théorie des fonctions elliptiques" , 1–2 , Chelsea, reprint (1972)
[a2] S. Lang, "Elliptic functions" , Addison-Wesley (1973)
[a3] D.F. Lawden, "Elliptic functions and applications" , Springer (1989)
[a4] A. Weil, "Elliptic functions according to Eisenstein and Kronecker" , Springer (1976)
How to Cite This Entry:
Weierstrass elliptic functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weierstrass_elliptic_functions&oldid=44224
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article