Namespaces
Variants
Actions

Waring problem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 11P05 [MSN][ZBL]

A problem in number theory formulated in 1770 by E. Waring in the following form: Any natural number is a sum of 4 squares, of 9 cubes and of 19 fourth-powers. In other words, for all $k\geq2$ there exists a $s=s(k)$, depending only on $k$, such that every natural number is the sum of $s$ $k$-th powers of non-negative integers. D. Hilbert in 1909 was the first to give a general solution of Waring's problem with a very rough estimate of the value of $s$ as a function of $k$; this is why the problem is sometimes known as the Hilbert–Waring problem. Let $J_{s,k}(N)$ be the number of solutions of the equation

\begin{equation}\label{war}x_1^k+\cdots+x_s^k=N\end{equation}

in non-negative integers. Hilbert's theorem then states that there exists a $s=s(k)$ for which $J_{s,k}(N)\geq1$ for any $N\geq1$. G.H. Hardy and J.E. Littlewood, who applied the circle method to the Waring problem, demonstrated in 1928 that for $s\geq(k-2)2^{k-1}+5$ the value of $J_{s,k}(N)$ is given by an asymptotic formula of the type

\begin{equation}\label{asym}J_{s,k}(N)=AN^{s/k-1}+O(N^{s/k-1-\gamma}),\end{equation}

where $A=A(N)\geq c_0>0$, while $c_0$ and $\gamma>0$ are constants. Consequently, if $N\geq N_0(k)$, equation \ref{war} has a solution.

An elementary proof of Waring's problem was given in 1942 by Yu. V. Linnik. There exist many different generalizations of Waring's problem (the variables run through a certain subset of the set of natural numbers; the number $N$ is represented by polynomials $f_1(x_1),\ldots,f_s(x_s)$ rather than by monomials $x_1^k,\ldots,x_s^k$; equation (1) is replaced by a congruence, etc.).

Research on Waring's problem has mainly focused on sharpening estimates for the following three questions:

  1. Find the smallest $s$ such that \ref{war} has solutions for all sufficiently large $N$;
  2. Find the smallest $s$ such that \ref{war} has solutions for all $N$;
  3. Find the smallest $s$ such that the number of solutions to \ref{war}, $J_{s,k}(N)$, is given by the asymptotic formula \ref{asym}.

These quantities are known as $G(k)$, $g(k)$, and $\tilde{G}(k)$ respectively. Clearly, $\tilde{G}(k)\geq G(k)$ and $g(k)\geq G(k)$. The progress on bounds for these quantities is detailed below.

Solvable for $N$ sufficiently large

Let $G(k)$ be the smallest integer such that equation \ref{war} is solvable for $s\geq G(k)$ and $N$ sufficiently large depending on $k$.

It is known that $G(k)\geq k+1$. It was proved in 1934 by I.M. Vinogradov, using his own method, that

$$G(k)\leq 3k(\ln k+9).$$

Moreover, many results are available concerning $G(k)$ for small values of $k$: $G(4)=16$ (H. Davenport, 1939); $G(3)=7$ (Yu.V. Linnik, 1942).

Solvable for all $N$

Let $g(k)$ be the smallest integer such that equation \ref{war} is solvable for $s\geq g(k)$ and $N\geq1$.

It was shown in 1936 by L. Dickson and S. Pillai, who also used the Vinogradov method, that

$$g(k)=2^k+\left[\left(\frac{3}{2}\right)^k\right]-2$$

for all $k>6$ for which

$$\left(\frac{3}{2}\right)^k-\left[\left(\frac{3}{2}\right)^k\right]\leq1-\left(\frac{1}{2}\right)^k\left\{\left[\left(\frac{3}{2}\right)^k\right]+2\right\}.$$

The last condition was demonstrated in 1957 by K. Mahler for all sufficiently large $k$.

It is known that $g(2)=4$ (J.L. Lagrange, 1770), $g(3)=9$ (A. Wieferich, A. Kempner, 1912), $g(4)=19$ (R. Balusabramanian, J. Deshouillers, F. Dress, 1986), $g(5)=37$ (Chen-Jingrun, 1964). See also Circle method and [HaWr][Sh].

Asymptotic formula

Let $\tilde{G}(k)$ be the smallest integer such that the asymptotic formula \ref{asym} applies to $J_{s,k}(N)$ if $s\geq \tilde{G}(k)$. The result of Hardy and Littlewood mentioned above shows that

$$\tilde{G}(k)\leq(k-2)2^{k-1}+5.$$

The first substantial improvement for large values of $k$ was obtained by Vinogradov, who showed that

$$\tilde{G}(k)\leq 4k^2\ln k.$$

The current best bound for large values of $k$ was obtained by Wooley who showed that

$$\tilde{G}(k)\leq 2k^2-k^{4/3}+O(k).$$

References

[De] B.N. Delone, "The St Petersburg school of number theory", Moscow-Leningrad (1947) (In Russian) Zbl 0033.10403 Translated, American Mathematical Society (2005) ISBN 0-8218-3457-6 Zbl 1074.11002
[Hu] L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie", Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 1 : 2 (1959) (Heft 13, Teil 1)
[Kh] A.Ya. Khinchin, "Three pearls of number theory" , Graylock (1952) Translation from the second, revised Russian ed. [1948] Zbl 0048.27202 Reprinted Dover (2003) ISBN 0486400263
[Vi] I.M. Vinogradov, "Selected works", Springer (1985) (Translated from Russian)
[Vi2] I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers", Interscience (1954) (Translated from Russian)
[HaWr] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers", Oxford Univ. Press (1979) pp. Chapt. 6
[Sh] D. Shanks, "Solved and unsolved problems in number theory", Chelsea, reprint (1978)
[Va] R.C. Vaughan, "The Hardy–Littlewood method", Cambridge Univ. Press (1981)
[Wo] T. D. Wooley, "Vinogradov's mean value theorem via efficient congruencing", Annals of Math. 175 (2012), 1575--1627.
How to Cite This Entry:
Waring problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Waring_problem&oldid=54412
This article was adapted from an original article by A.A. Karatsuba (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article