Namespaces
Variants
Actions

Difference between revisions of "User talk:Musictheory2math"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Question)
(Question: no answer)
Line 538: Line 538:
  
 
Why don't you introduce yourself? do you want close my account? Alireza Badali 21:36, 6 December 2017 (CET)
 
Why don't you introduce yourself? do you want close my account? Alireza Badali 21:36, 6 December 2017 (CET)
 +
 +
::I know what is a sequence and subsequence, and I understand that prime numbers may be treated as a subsequence of the sequence of natural numbers; but I do not know what is "special order"; I also do not know what is "order located on a polynomial"; thus, I get no answer to my question.
 +
::But do not worry: being not an admin, I cannot close your account. I only can lose interest to your text. [[User:Passer By|Passer By]] ([[User talk:Passer By|talk]]) 23:52, 6 December 2017 (CET)

Revision as of 00:52, 7 December 2017

Goldbach's conjecture

Main theorem: Let $\mathbb{P}$ is the set prime numbers and $S$ is a set that has been made as below: put a point at the beginning of each member of $\Bbb{P}$ like $0.2$ or $0.19$ then $S=\{0.2,0.3,0.5,0.7,...\}$ is dense in the interval $[0.1,1]$ of real numbers.

$\,$This theorem is a base for finding formula of prime numbers, because for each member of $S$ like $a$ with its special and fixed location into $(0.1,1)$ and a small enough neighborhood like $(a-\epsilon ,a+\epsilon )$, but $a$ is in a special relation with members of $(a-\epsilon ,a+\epsilon )$ but there exists a special order on $S$ into $(0.1,1)$ and of course formula of prime numbers has whole properties related to prime numbers simultaneous. There is a musical note on the natural numbers that can be discovered by the formula of prime numbers. Musictheory2math (talk) 16:29, 25 March 2017 (CET)

True, $S$ is dense in the interval $(0.1,1)$; this fact follows easily from well-known results on Distribution of prime numbers. But I doubt that this is "This theorem is a base for finding formula of prime numbers". Boris Tsirelson (talk) 22:10, 16 March 2017 (CET)
Dear Professor Boris Tsirelson , in principle finding formula of prime numbers is very lengthy. and I am not sure be able for it but please give me few time about two month for expression my theories. Musictheory2math (talk) 16:29, 25 March 2017 (CET)
You mean, how to prove that $S$ is dense in $(0.1,1)$, right? Well, on the page "Distribution of prime numbers", in Section 6 "The difference between prime numbers", we have $ d_n \ll p_n^\delta $, where $p_n$ is the $n$-th prime number, and $ d_n = p_{n+1}-p_n $ is the difference between adjacent prime numbers; this relation holds for all $ \delta > \frac{7}{12} $; in particular, taking $ \delta = 1 $ we get $ d_n \ll p_n $, that is, $ \frac{d_n}{p_n} \to 0 $ (as $ n \to \infty $), or equivalently, $ \frac{p_{n+1}}{p_n} \to 1 $. Now, your set $S$ consists of numbers $ s_n = 10^{-k} p_n $ for all $k$ and $n$ such that $ 10^{k-1} < p_n < 10^k $. Assume that $S$ is not dense in $(0.1,1).$ Take $a$ and $b$ such that $ 0.1 < a < b < 1 $ and $ s_n \notin (a,b) $ for all $n$; that is, no $p_n$ belongs to the set

\[ X = (10a,10b) \cup (100a,100b) \cup (1000a,1000b) \cup \dots \, ; \]

all $ p_n $ belong to its complement

\[ Y = (0,\infty) \setminus X = (0,10a] \cup [10b,100a] \cup [100b,1000a] \cup \dots \]

Using the relation $ \frac{p_{n+1}}{p_n} \to 1 $ we take $N$ such that $ \frac{p_{n+1}}{p_n} < \frac b a $ for all $n>N$. Now, all numbers $p_n$ for $n>N$ must belong to a single interval $ [10^{k-1} b, 10^k a] $, since it cannot happen that $ p_n \le 10^k a $ and $ p_{n+1} \ge 10^k b $ (and $n>N$). We get a contradiction: $ p_n \to \infty $ but $ p_n \le 10^k a $.
And again, please sign your messages (on talk pages) with four tildas: ~~~~. Boris Tsirelson (talk) 20:57, 18 March 2017 (CET)

Theorem $1$: For each natural number like $a=a_1a_2a_3...a_k$ that $a_j$ is $j$_th digit for $j=1,2,3,...,k$, there is a natural number like $b=b_1b_2b_3...b_r$ such that the number $c=a_1a_2a_3...a_kb_1b_2b_3...b_r$ is a prime number. Musictheory2math (talk) 16:29, 25 March 2017 (CET)

Ah, yes, I see, this follows easily from the fact that $S$ is dense. Sounds good. Though, decimal digits are of little interest in the number theory. (I think so; but I am not an expert in the number theory.) Boris Tsirelson (talk) 11:16, 19 March 2017 (CET)

Now I want state philosophy of This theorem is a base for finding formula of prime numbers: However we loose the induction axiom for finite sets (Induction axiom is unable for discovering formula of prime numbers.) but I thought that if change space from natural numbers with cardinal $\aleph_0$ to a bounded set with cardinal $\aleph_1$ in the real numbers then we can use other features like axioms and important theorems in the real numbers for working on prime numbers and I think it is a better and easier way. Musictheory2math (talk) 16:29, 25 March 2017 (CET)

I see. Well, we are free to use the whole strength of mathematics (including analysis) in the number theory; and in fact, analysis is widely used, as you may see in the article "Distribution of prime numbers".
But you still do not put four tildas at the end of each your message; please do. Boris Tsirelson (talk) 11:16, 19 March 2017 (CET)


Importance of density in the Main theorem is similar to definition of irrational numbers from rational numbers.

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states: Every even integer greater than $2$ can be expressed as the sum of two primes.


Assume $S_1=\{a/10^n\, |\, a\in S$ for $n=0,1,2,3,...\}$ & $L=\{(a,b)\,|\,a,b \in S_1$ & $0.01 \le a+b \lt 0.1$ & $\exists m \in \Bbb N,\, a \cdot 10^m,\,b \cdot 10^m$ are prime numbers & $a\cdot 10^m\neq 2\neq b\cdot 10^m\}$


Theorem: $S_1$ is dense in the interval $(0,1)$ and $S_1\times S_1$ is dense in the $(0,1)\times (0,1)$.


If $p,q$ are prime numbers and $n$ is the number of digits in $p+q$ and $m=$max(number of digits in $p$, number of digits in $q$), let $\varphi : L \to \Bbb N,$ $\varphi ((p,q)) = \begin{cases} m+1 & n=m \\m+2 & n=m+1 \end{cases}$


Theorem: For each $p,q$ belong to prime numbers and $\alpha \in \Bbb R$ that $0 \le \alpha,$ now if $\alpha = q/p$ then $L \cap \{(x,y)\,|\,y=\alpha x \}=\{10^{-\varphi ((p,q))}(p,q)\}$ and if $\alpha \neq q/p$ then $L \cap \{(x,y)\,|\,y=\alpha x \}=\emptyset $ and if $\alpha = 1$ then $L \cap \{(x,x)\}$ is dense in the $\{(x,x)\,|\,0.005 \le x \lt 0.05 \}$.


Definition: Assume $L_1=\{(a,b)\,|\,(a,b) \in L$ & $b \lt a \}$ of course members in $L$ & $L_1$ are corresponding to prime numbers as multiplication and sum and minus and let $E=(0.007,0.005)$ (and also $5$ points to form of $(0.007+\epsilon _1,0.005-\epsilon _2)$ that $\epsilon _2 \approx 2\epsilon _1$) is a base for homotopy groups! and let $A:=\{(x,y)\,|\, 0 \lt y\lt x,$ $0.01 \le x+y \lt 0.1\}$ & $V:=\{(a+b)\cdot 10^m \,|$ $(a,b) \in ((S_1 \times S_1) \cap A) \setminus L,$ there is a least member like $m$ in $\Bbb N$ such that $(a+b)\cdot 10^m \in \Bbb N \}$ & $r:\Bbb N\to (0,1)$ is a function given by $r(n)$ is obtained as put a point at the beginning of $n$ like $r(34880)=0.34880$ and similarly consider $\forall k\in\Bbb N\cup\{0\}$ $r_k: \Bbb N \to (0,1)$ by $r_k(n)=10^{-k}\cdot r(n)$.


Conjecture $1$: For each even natural number like $t=t_1t_2t_3...t_k$, then $\exists (a,b),(b,a)\in L \cap$ $\{(x,y)\,|$ $x+y=0.0t_1t_2t_3...t_k\}$ such that $0.0t_1t_2t_3...t_k=a+b$ & $10^{k+1} \cdot a,10^{k+1} \cdot b$ are prime numbers.

Conjecture $1$ is an equivalent to Goldbach's conjecture, this conjecture has two solutions $1)$ Homotopy groups $\pi _n(X)$ (by using cognition $L_1$ from homotopy groups this conjecture is solved of course we must attend to two spheres because $S^2$ minus the tallest point in north pole as topological and algebraic is an equivalent with plane $\Bbb R^2$ (except $\infty$) and also every mapping is made between these two spheres easily if these spheres aren't concentric.) and $2)$ Algebraic methods.
Assuming conjecture $1$, it guides us to finding formula of prime numbers at $(0,1) \times (0,1),$ in natural numbers based on each natural number is equal to half of an even number so in natural numbers main role is with even numbers but when we change space from $\Bbb N$ to $r(\Bbb N)$ then main role will be with $r( \{2k-1\, | \, k \in \Bbb N \} )$, because $r(\{2k-1\,|\,k\in \Bbb N\})\subset r(\{2k\,|\,k\in \Bbb N\})$ or in principle $r(\Bbb N)=r(\{2k\,|\,k\in \Bbb N\})$ for example $0.400=0.40=0.4$ or $0.500=0.50=0.5$ but however a smaller proper subset of $r( \{2k-1\, | \, k \in \Bbb N \} \cup \{2\} )$ namely $S$ is helpful, but for finding formula of prime numbers we need to all power of Main theorem not only what such that is stated in above conjecture namely for example we must attend to the set $V$ too!
Conjecture $2$: For each even natural number like $t=t_1t_2t_3...t_k,$ $\exists x\in \{\alpha (a^2+b^2)^{0.5}\,|$ $(a,b) \in L,$ $\alpha \in (1,\sqrt 2] \} \cap r_1(\{2k\,|\, k\in \Bbb N \} )$ such that $t=10^{k+1} x$.
Conjecture $2$ is an equivalent to conjecture $1$, because $\forall t=t_1t_2t_3...t_k \in \Bbb N$ that $t$ is even, $\forall (a,b)\in \{(x,y)\,|\, x+y=0.0t_1t_2t_3...t_k,\, 0\lt y\le x \}$ we have: $(a^2+b^2)^{0.5}\lt 0.0t_1t_2t_3...t_k\le \sqrt 2\cdot (a^2+b^2)^{0.5}$ so by intermediate value theorem we have $0.0t_1t_2t_3...t_k=\alpha (a^2+b^2)^{0.5}$ that $1\lt \alpha \le \sqrt 2$. But now if $a=10^{-k-1} p,b=10^{-k-1} q$ for $p,q$ belong to prime numbers we have:$$\alpha = \frac{t}{\sqrt {p^2+q^2}}$$


Theorem: $\forall p,q,r,s$ belong to prime numbers & $q \lt p$ then $(p,q)$ is located at the direct line contain the points $(0,0),10^{-\varphi ((p,q))}(p,q)$ and if $(r,s)$ is belong to this line then $p=r$ & $q=s$.


Let $S^2_2$ be a sphere with center $(0,0,r_2)$ and radius $r_2$ and $S^2_1$ be a sphere with center $(0.007,0.005,c)$ and radius $r_1$ such that $S^2_1$ is into the $S^2_2$ now suppose $f_1,f_2$ are two mapping from $A$ to $S^2_2$ such that $1)$ if $x \in A,$ $f_1 (x)$ is a curve on $S^2_2$ that is obtained as below: from $x$ draw a direct line that be tangent on $S^2_1$ and stretch it till cut $S^2_2$ in curve $f_1 (x)$ and $2)$ if $x \in A,$ $f_2 (x)$ is a curve on $S^2_2$ that is obtained as below: from $x$ draw a direct line that be tangent on $S^2_1$ and then in this junction point draw a direct line perpendicular at $S^2_2$ till cut $S^2_2$ in curve $f_2 (x)$.

Let $f_3: L_1 \to S^1$ is a mapping with $f_3 ((a,b)) = (a^2+b^2)^{-0.5}(a,b)$ and $f_4:L_1 \to S^2$ is a mapping with $f_4 ((a,b)) = (a^4+a^2b^2+b^2)^{-0.5}(a^2,ab,b) $


Guess $1$: $f_3 (L_1) $ is dense in the $S^1 \cap \{ (x,y)\,|\, 0 \le y$ & $2^{-0.5} \le x \}$.


Let $U: S^2_2 \setminus \{(0,0,2r_2)\} \to \{(x,y,0)\,|\, x,y \in \Bbb R \}$ is a mapping such that draw a direct line by $(0,0,2r_2)$ & $(x,y,z)$ till cut the plane $\{(x,y,0)\,|\, x,y \in \Bbb R \}$ in the point $(x_1,y_1,0)$. Now must a group be defined on the all the points of $S^2_2 \setminus \{(0,0,2r_2)\}$.

Let $G=S^2_2 \setminus \{(0,0,2r_2)\}$ be a group by operation $g_1 + g_2 = U^{-1} (U(g_1)+U(g_2))$ that second addition is vector addition in the vector space $(\Bbb R^2,\Bbb Q,+,.)$ and now we must attend to subgroups of $G$ particularly $y=\pm x,\,y=0,\,x=0$


Theorem: Let $K_3 =\{p+q+r\,|\, p,q,r \in \Bbb P \}$ then $r(K_3)$ is dense in the interval $(0.1,1)$ of real numbers. Proof from Goldbach's weak conjecture


Guess $2$: Let $K_2 =\{p+q\,|\,p,q \in \Bbb P \}$ then $r(K_2)$ is dense in the interval $(0.1,1)$ of real numbers.


Let $F= \Bbb Q$ so what are Galois group of polynomials $x^4+b^2x^2+b^2$ and $(1+a^2)x^2 +a^4$.


Theorem $2$: If $(a,b),(c,d)\in \{(u,v)\,|\, u,v\in S_1$ & $0.01\le u+v\lt 0.1$ & $0\lt v\lt u \}$ and $(a,b),(c,d),(0,0)$ are located at a direct line then $(a,b)=(c,d)$.

Proof: Suppose $A_1=\{(x,y)\,|\, y \lt x\lt 0.01,\, x+y\ge 0.01\}$ & $A_2=\{(x,y)\,|\, y\lt x\lt 0.1,$ $x+y\ge 0.1\}$ so $\forall (x,y) \in A_2 :\,\, 0.1(x,y)\in A_1$ & $\forall (x,y) \in A_1 :\,\, 10(x,y)\in A_2$ so theorem can be proved in $A_3=\{(x,y)\,|\, 0\lt y\lt x\lt 0.1,\, x\ge 0.01\}$ instead $A$, but in $A_3$ we have: $\forall (x_1,y_1),(x_2,y_2)\in A_3\cap (S_1\times S_1)$ so $x_1=10^{-r_1}p_1,\, y_1=10^{-s_1}q_1,$ $x_2=10^{-r_2}p_2,$ $y_2=10^{-s_2}q_2$ and if ${{y_1}\over {x_1}}$=${{y_2}\over {x_2}}$ then ${{10^{-s_1}q_1}\over {10^{-r_1}p_1}}$=${{10^{-s_2}q_2}\over {10^{-r_2}p_2}}$ so $p_1=p_2,\, q_1=q_2$ so $x_1=x_2$ so $y_1=y_2$ therefore $(x_1,y_1)=(x_2,y_2)$.


Let $Y=\{(a,b)\,|\, (a,b)\in (S_1\times S_1)\setminus L,\, 0.01\le a+b\lt 0.1\}$ & $\forall i\in \Bbb N,$ $E_i=\{(a,b)\,|$ $(a,b)\in S_1\times S_1,$ $a+b=r_1(2i)\}$ & $O_i=\{(a,b)\,|\, (a,b)\in S_1\times S_1,\, a+b=r_1(2i-1)\}$.


In theorem $2$ I obtained a cognition to $(S_1\times S_1)\cap A$ from $(0,0)$ but now I want do it from $\infty$; in the trapezoid shape with vertices $\{(0.1,0),(0.01,0),(0.05,0.05),(0.005,0.005)\}$ intersection of two direct lines contain points $\{(0.1,0),(0.01,0)\}$ & $\{(0.05,0.05),(0.005,0.005)\}$ is $(0,0)$ so we can describe $(S_1\times S_1)\cap A$ from $(0,0)$ but when we look at two parallel lines contain points $\{(0.1,0),(0.05,0.05)\}$ & $\{(0.01,0),(0.005,0.005)\}$ there isn't any point as a criterion for description of $Y$ or $L$ only inaccessible $\infty$ remains to description or the same these parallel lines contain points $\{(0.1,0),(0.05,0.05)\}$ & $\{(0.01,0),(0.005,0.005)\}$.


Theorem $3$: $1)\, \forall x\in [0.01,0.1)\setminus r_1 (\Bbb N),\,\, \{(u,v)\,|\, u+v=x\}\cap (S_1\times S_1)=\emptyset ,\,\,$ $2)\, \forall i\in \Bbb N,$ $E_i\subsetneq L,\, O_i\cap L\neq \emptyset \neq O_i\cap Y\neq O_i,\qquad Y=(\bigcup _{i\in \Bbb N} O_i )\setminus L,$ $L=(\bigcup _{i\in \Bbb N} E_i)\cup (\bigcup _{i\in \Bbb N} (O_i\cap L)),\,\,$ $3)\, \forall i\in \Bbb N,$ cardinal$(O_i \setminus L)\in \Bbb N$.

Proof: $1,2)\, \forall (u,v)\in \{(x,y)\,|\, 0\lt y,x,\, 0.01\le x+y\lt 0.1\}$ be aware to summation $u+v$ at the lines $x+y=c$ for $0.01\le c\lt 0.1 \,\,\,3)\, \forall i\in\Bbb N,\, 2i-1$ can be written as utmost $2i-1$ summation to form of $a\cdot 10^m+b\cdot 10^n$ that $m\neq n,\, a,b\in S_1,\, a\cdot 10^m,b\cdot 10^n$ are prime numbers and or to form of $2+b\cdot 10^n$ that $b\in S_1,\, b\cdot 10^n$ is a prime number.


Guess $3$: $\forall i\in \Bbb N,$ cardinal$(E_i)=\aleph_0 =$cardinal$(O_i \cap L)$


Guess $4$: $L_1$ is dense in $\{(x,y)\,|\, 0\le y\le x,\, 0.01\le x+y\le 0.1\}$.


Guess $5$: $\forall i\in \Bbb N,\, E_i\cap \{(x,y)\,|\, y\le x\}$ is dense in the $\{(x,y)\,|\, x+y=r_1(2i),\, 0\le y\le x\}$ and $O_i\cap L\cap \{(x,y)\,|\, y\le x\}$ is dense in the $\{(x,y)\,|\, x+y=r_1(2i-1),$ $0\le y\le x\}$.


A rectangle: Suppose $B$ is a rectangle with vertices $(0.105,-0.005),(0.05,0.05),(0.005,0.005),$ $(0.06,-0.05)$ that one of usages of this rectangle is for writing each even natural number as minus of two prime numbers but during calculations we must use $\{(x,0)\,|\, 0.01\le x\lt 0.1\}$, but the question is however this rectangle as topological isn't equivalent to the plane $\Bbb R^2$ and each point in this rectangle is corresponding to a infinite set with cardinal $\aleph_0$ in $\Bbb R^2$ but which concept on the plane $\Bbb R^2$ is corresponding to the density concept on this rectangle.


Now I want find a relation between $L_1$ & $W:=((S_1\times S_1) \cap A) \setminus L$.


Theorem: Let $K =\{2k \,|\, k \in \Bbb N \}$ so $r(K)$ is dense in the interval $(0.1,1)$ of real numbers. Proof from the Main theorem and this $r(p)=r(p\cdot 10)$ that $p$ is a prime number then $p\cdot 10$ is an even number and $\{ p\cdot 10 \,|\, p \in \Bbb P \} \subset K$.


Main theorem as a result of prime number theorem is a fundamental concept in number theory also multiplication operation is a base in normal definition of prime numbers so logarithm function as an inverse of $f(a)=a^n$ has some or whole prime numbers properties that has been used in prime number theorem and consequently in the Main theorem. But I want offer a new theory with researching on logarithmic functions that it can be a useful discussion in number theory.


Now a new definition of prime numbers based on mapping $r$ is necessary, presently I have an idea consider $\forall k\in \Bbb N,$ the sequence $b_k:\Bbb N \to \{1,2,3,4,5,6,7,8,9\},\,b_k(n)$ is the last digit in $k^n,$ so if $k=k_1k_2k_3...k_r$ then $b_k(1)=k_1$ and if $k^n=t_1t_2t_3...t_s$ so $b_k(n)=t_1,$ but for primes $k,$ it is a special different pattern than composite numbers and of course I want find some properties on $r$ for example $r(m \cdot n)$ when last digit is $1,2$ or $3$ or $4,5,6,7,8,9$, of course for $3$ penultimate digit (and probably two to last digit) is important and in addition is there any way for assessment location $r(m\cdot n)$ from $r(m)$ & $r(n)$.


Our weakness is from basic concepts, I want obtain a cognition of $(S_1\times S_1)\cap A$ and $L_1$ from point $(0.02,0.03)$ like theorem $2$ from $(0,0)$, but this time it is an equivalent to a new definition of $S_1$, because intersection of two direct lines contain points $\{(0.1,0),(0.01,0)\}$ & $\{(0.05,0.05),(0.005,0.005)\}$ is the point $(0,0)$ but however two direct lines contain points $\{(0.1,0),(0.05,0.05)\}$ & $\{(0.01,0),(0.005,0.005)\}$ are parallel so imposition of point $(0.02,0.03)$ as a criterion only can be equilibrated by concept of the set $S_1$!


Hypothesis $1$: $\forall m,t\in\Bbb N$ if $t=t_1t_2t_3...t_k\cdot 10^{m-1}$ for $t_k=2,4,6,8$ or $t=t_1t_2t_3...t_k\cdot 10^m$ for $t_k=1,3,5,7,9$ then if $\forall p,q\in \Bbb P$ that $p,q\lt t$ implies $t\neq p+q$ then $\exists M\subseteq \Bbb N$ that cardinal$(M)=\aleph_0$ so $\forall i\in M$ if $\forall r,s\in\Bbb P$ that $r,s\lt t\cdot 10^{i-m}$ then $t\cdot 10^{i-m}\neq r+s$.

I believe the Goldbach's conjecture is truth so I think with proof by contradiction we can prove the Goldbach's conjecture.
I think with assuming this hypothesis a contradiction will be obtained and consequently the Goldbach's conjecture will be proved.


From Dirichlet's theorem on arithmetic progressions that says: for any two positive coprime integers $a$ and $d$, there are infinitely many primes of the form $a+nd$, where $n$ is a non-negative integer, and from existence an one-to-one correspondence between the sets $A_1$ & $A_2$ in theorem $2$, I think there is a fixed in the following sets, $\forall p\in\Bbb P$ if $0.01\le r_1(p)\le 0.05$ the set $\{(a,b)\in L_1\,|\, a=r_1(p)\},$ and if $0.05\lt r_1(p)\lt 0.1$ the set $\{(a,b)\in L_1\,|\, a=r_1(p)\}\cup\{(a,b)\in L_1\,|\, a=r_2(p)\}$.


Guess $6$: $\forall t,r,s\in\Bbb N$ that $t=t_1t_2t_3...t_k$ is even and $r,s$ are odd and $s\le r$ and $t=r+s$ then $(10^{-k-1}r,10^{-k-1}s)\in A\cup \{(x,x)\,|$ $0.005\le x\lt0.05\}$.


If $\{\mathrm I_{\theta}\}_{\theta\in\mathcal I}$ is a partition for $U:=\{(p,q)\,|\, p,q\in\Bbb P,$ $q\le p\}$ then $\{J_{\theta}\}_{\theta\in\mathcal I}$ is a partition for $L_2:=L_1\cup \{(a,a)\in L\}$ such that $\forall\theta\in\mathcal I,$ $J_{\theta}=\{(r_s(p),r_t(q))\in L_2\,|\, r_t(q)\le r_s(p),$ $(p,q)\in\mathrm I_{\theta},$ $s,t\in\Bbb N\}\cup\{(r_t(q),r_s(p))\in L_2\,|\, r_s(p)\le r_t(q),$ $(p,q)\in\mathrm I_{\theta},$ $s,t\in\Bbb N\}$.

In the following I need to some partitions for $L_2$ or the same cognitions to $L_2,$ however we should be aware to the details of trapezoid shape with vertices $\{(0.1,0),(0.01,0),(0.05,0.05),(0.005,0.005)\}$, the problem is which partition is a good cognition to $L_2$


Guess $7$: $\forall a,d\in\Bbb N$ that gcd$(a,d)=1$ then cardinal$(\{(r_s(n),r_t(a+nd))\in L_1\,|\, n=0,1,2,3,...,$ $r,s\in\Bbb N\}\cup\{(r_t(a+nd),r_s(n))\in L_1\,|\, n=0,1,2,3,...,\, r,s\in\Bbb N\})=\aleph_0$


Theorem $4$: $\forall t\in\Bbb N\,\forall p\in\Bbb P\,1)\,$if $0.01\le r_1(p)\le 0.05$ then cardinal$(\{(r_1(p),u)\in L_2\})\in\Bbb N,\,2)$ if $0.05\lt r_1(p)\lt 0.1$ then cardinal$(\{(r_1(p),u)\in L_2\}\cup\{(r_2(p),u)\in L_2\})\in\Bbb N,\, 3)$ if $r_1(p)\lt 0.05$ then cardinal$(\{(u,r_t(p))\in L_2\})\in\Bbb N$ & cardinal$(\{(u,v)\in L_2\,|\, v\in\bigcup _{m\in\Bbb N} \{r_m(p)\}\})=\aleph_0$

Proof: Be aware to number of digits in prime numbers corresponding to coordinates of each member in $L_2$ and Dirichlet theorem on arithmetic progressions.


Guess $8$: $\forall c\in (\bigcup _{k=2}^{\infty} r_k(\Bbb N))\cup\{0.01\},\,$cardinal$(\{(u,v)\in L_1\,|\, u-v=c\})=\aleph_0$


Hypothesis $2$: $\forall k,m\in\Bbb N,\,$that gcd$(2,m)=1$ and $\forall p,q\in\Bbb P$ with $p,q\lt 2^km$ that $2^km\neq p+q$ then $\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ cardinal$(\{t\in\Bbb N\,|\, 2^tm\neq p+q$ for $\forall p,q\in\Bbb P$ that $p,q\lt 2^tm\})=\aleph_0$


Now by using Chen's theorem that says: Every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime(the product of two primes) and its extension by Tomohiro Yamada that says: Every even number greater than ${\displaystyle e^{e^{36}}\approx 1.7\cdot 10^{1872344071119348}}$ is the sum of a prime and a product of at most two primes, and Chen's theorem $II$ that is a result on the twin prime conjecture, It states that if $h$ is a positive even integer, there are infinitely many primes $p$ such that $p+h$ is either prime or the product of two primes and Ying Chun Cai's theorem that says: there exists a natural number $N$ such that every even integer $n$ larger than $N$ is a sum of a prime less than or equal to $n^{0.95}$ and a number with at most two prime factors, I want make some partitions for $L_2$ (in principle I want write Gaussian integers with prime coordinates in several equations.):


Theorem: $r(\{2p\,|\, p\in\Bbb P\})$ and $r(\{5p\,|\, p\in\Bbb P\})$ are dense in the interval $[0.1,1]$.

Proof: Under Euclidean topology, mapping $f_1:\{(x,x)\,|\, x\in [0.005,0.05)\}\to\{(x,0)\,|\, x\in [0.01,0.1)\}$ by $f_1((a,a))=(2a,0)$ & $f_2:\{(x,0)\,|\, x\in [0.01,0.1)\}\to \{(x,x)\,|\, x\in [0.005,0.05)\}$ by $f_2((a,0))=(0.5a,0.5a)$ are homeomorphism and also $\forall r_1(p)\in [0.01,0.02]$ we have $0.5r_1(p)=r_2(5p)$ & $\forall r_1(p)\in (0.02,0.1)$ we have $0.5r_1(p)=r_1(5p)$ of course by another topology we should transfer density to $[0.1,1]$.
Question $1$: According to gcd$(2,5)=1$ & $2\cdot 5=10$ & $(5-2)-2=1$ so $\forall q\in\Bbb P,$ is $r(\{pq\,|\, p\in\Bbb P\})$ dense in the $[0.1,1]$


Assume $\forall m,n\in\Bbb N$

$\begin{cases} n\star 1=n\\ (2n)\star (2n+1)=1\\ (2n)\star (2m)=2n+2m\\ (2n+1)\star (2m+1)=2n+2m+1\\ (2n)\star (2m+1)=\begin{cases} 2m-2n+1 & 2m+1\gt 2n\\ 2n-2m & 2n\gt 2m+1\end{cases}\end{cases}$

and $p_n\star _1p_m=p_{n\star m}$ that $p_n$ is $n$_th prime & $\forall (p_n,p_m),(p_s,p_t)\in\Bbb P\times\Bbb P,$ $(p_n,p_m)\star _2(p_s,p_t)=(p_n\star _1p_s,p_m\star _1p_t)$.

It is clear $(\Bbb N,\star)$ & $(\Bbb P,\star _1)$ & $(\Bbb P\times\Bbb P,\star _2)$ are groups and $<2>=(\Bbb N,\star)\cong (\Bbb Z,+)\cong (\Bbb P,\star _1)=<3>$ & $<(3,2),(2,3)>=(\Bbb P\times\Bbb P,\star _2)\cong (\Bbb Z\times\Bbb Z,+)$ & $\pi _n(\Bbb P\times\Bbb P)\cong\pi _n(\Bbb Z)\times\pi _n(\Bbb Z)$.

and let $Q_1=\{{m\over n}\,|\, m,n\in\Bbb N\}$, it is clear $(Q_1,\star _{Q_1})$ is a group as below:

$\begin{cases} \forall m,n,u,v\in\Bbb N,\, {m\over n}\star _{Q_1} 1={m\over n}\\ ({m\over n})^{-1}={m^{-1}\over n^{-1}}\\ {m\over n}\star _{Q_1} {u\over v}={m_1\over n_1}\star _{Q_1} {u_1\over v_1}={{m_1\star u_1}\over {n_1\star v_1}}\quad\text{if}\,\,\begin{cases} {m\over n}={m_1\over n_1},\,\, {u\over v}={u_1\over v_1},\,\, {mu\over nv}={m_1u_1\over n_1v_1}\\ \text{gcd}(m_1,n_1)=1=\text{gcd}(m_1,v_1)=\text{gcd}(u_1,n_1)=\text{gcd}(u_1,v_1)\end{cases}\end{cases}$

Of course each sequence $\{a_n\}$ that $\forall n,m\in\Bbb N,\,n\neq m$ then $a_n\neq a_m$ is a cyclic group as: $a_n\star _aa_m=a_{n\star m},\, e=a_1,\, G=<a_2>$


Manner of making of new groups on $\Bbb N$: I want explain it with an example write integers like a sequence as: $$0,1,2,-1,-2,3,4,-3,-4,5,6,-5,-6,7,8,-7,-8,9,10,-9,-10,11,12,-11,-12,...$$ $$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,...$$ and let $e=1$ and $(\Bbb N,\star _{\Bbb N})=<2>$ then begin for discovering of rule of $\star _{\Bbb N}$ as below:

$\begin{cases} 0+8=8 & 1\star _{\Bbb N} 15=15\\ 1+8=9 & 2\star _{\Bbb N} 15=18\\ 2+8=10 & 3\star _{\Bbb N} 15=19\\ (-1)+8=7 & 4\star _{\Bbb N} 15=14\\ (-2)+8=6 & 5\star _{\Bbb N} 15=11\\ 3+8=11 & 6\star _{\Bbb N} 15=22\\ 4+8=12 & 7\star _{\Bbb N} 15=23\\ (-3)+8=5 & 8\star _{\Bbb N} 15=10\\ (-4)+8=4 & 9\star _{\Bbb N} 15=7\\ 5+8=13 & 10\star _{\Bbb N} 15=26\\ 6+8=14 & 11\star _{\Bbb N} 15=27\\ (-5)+8=3 & 12\star _{\Bbb N} 15=6\\ (-6)+8=2 & 13\star _{\Bbb N} 15=3\\ 7+8=15 & 14\star _{\Bbb N} 15=30\\ 8+8=16 & 15\star _{\Bbb N} 15=31\\ (-7)+8=1 & 16\star _{\Bbb N} 15=2\\ (-8)+8=0 & 17\star _{\Bbb N} 15=1\end{cases}$

that its group is:

$\begin{cases} m\star _{\Bbb N} 1=m\\ (4m)\star _{\Bbb N} (4m-2)=1=(4m+1)\star _{\Bbb N} (4m-1)\\ (4m)\star _{\Bbb N} (4m+2)=3=(4m+1)\star _{\Bbb N} (4m+3)\\ (4m-2)\star _{\Bbb N} (4n-2)=4m+4n-5\\ (4m-2)\star _{\Bbb N} (4n-1)=4m+4n-2\\ (4m-2)\star _{\Bbb N} (4n)=\begin{cases} 4m-4n-1 & 4m-2\gt 4n\\ 4n-4m+1 & 4n\gt 4m-2\end{cases}\\ (4m-2)\star _{\Bbb N} (4n+1)=\begin{cases} 4m-4n-2 & 4m-2\gt 4n+1\\ 4n-4m+4 & 4n+1\gt 4m-2\end{cases}\\ (4m-1)\star _{\Bbb N} (4n-1)=4m+4n-1\\ (4m-1)\star _{\Bbb N} (4n)=\begin{cases} 4m-4n+2 & 4m-1\gt 4n\\ 4n-4m & 4n\gt 4m-1\\ 2 & m=n\end{cases}\\ (4m-1)\star _{\Bbb N} (4n+1)=\begin{cases} 4m-4n-1 & 4m-1\gt 4n+1\\ 4n-4m+1 & 4n+1\gt 4m-1\end{cases}\\ (4m)\star _{\Bbb N} (4n)=4m+4n-3\\ (4m)\star _{\Bbb N} (4n+1)=4m+4n\\ (4m+1)\star _{\Bbb N} (4n+1)=4m+4n+1\end{cases}$

that this group $(\Bbb N,\star _{\Bbb N})$ is helpful for twin prime conjecture.


and the Klein four-group $(\Bbb Z _2\times\Bbb Z _2,+)$ is a fundamental concept in the group theory that its usage is for propositions rejection so I made below group somehow similar to that group in terms of members production for proof of the Goldbach's conjecture with proof by contradiction that is: $$0,1,2,-2,-1,3,-3,4,5,-5,-4,6,-6,7,8,-8,-7,9,-9,10,11,-11,-10,12,-12,...$$ $$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,...$$ and $e=1$ and $(\Bbb N,\star _{K_4})=<2>$ so we have:

$\begin{cases} 0+(-7)=-7 & 1\star _{K_4}17=17\\ 1+(-7)=-6 & 2\star _{K_4}17=13\\ 2+(-7)=-5 & 3\star _{K_4}17=10\\ (-2)+(-7)=-9 & 4\star _{K_4}17=19\\ (-1)+(-7)=-8 & 5\star _{K_4}17=16\\ 3+(-7)=-4 & 6\star _{K_4}17=11\\ (-3)+(-7)=-10 & 7\star _{K_4}17=23\\ 4+(-7)=-3 & 8\star _{K_4}17=7\\ 5+(-7)=-2 & 9\star _{K_4}17=4\\ (-5)+(-7)=-12 & 10\star _{K_4}17=25\\ (-4)+(-7)=-11 & 11\star _{K_4}17=22\\ 6+(-7)=-1 & 12\star _{K_4}17=5\\ (-6)+(-7)=-13 & 13\star _{K_4}17=29\\ 7+(-7)=0 & 14\star _{K_4}17=1\\ 8+(-7)=1 & 15\star _{K_4}17=2\\ (-8)+(-7)=-15 & 16\star _{K_4}17=31\\ (-7)+(-7)=-14 & 17\star _{K_4}17=28\end{cases}$

that its group is:

$\begin{cases} m\star _{K_4}1=m\\ (6m-4) \star _{K_4}(6m-1)=1=(6m-3) \star _{K_4}(6m-2)=(6m) \star _{K_4}(6m+1)\\ (6m-4) \star _{K_4}(6n-4)=6m+6n-9\\ (6m-4) \star _{K_4}(6n-3)=6m+6n-6\\ (6m-4) \star _{K_4}(6n-2)=\begin{cases} 6m-6n-3 & 6m-4\gt 6n-2\\ 6n-6m+5 & 6n-2\gt 6m-4\end{cases}\\ (6m-4) \star _{K_4}(6n-1)=\begin{cases} 6m-6n & 6m-4\gt 6n-1\\ 6n-6m+1 & 6n-1\gt 6m-4\end{cases}\\ (6m-4) \star _{K_4}(6n)=6m+6n-4\\ (6m-4) \star _{K_4}(6n+1)=\begin{cases} 6m-6n-4 & 6m-4\gt 6n+1\\ 6n-6m+4 & 6n+1\gt 6m-4\end{cases}\\ (6m-3) \star _{K_4}(6n-3)=6m+6n-4\\ (6m-3) \star _{K_4}(6n-2)=\begin{cases} 6m-6n & 6m-3\gt 6n-2\\ 6n-6m+1 & 6n-2\gt 6m-3\end{cases}\\ (6m-3) \star _{K_4}(6n-1)=\begin{cases} 6m-6n+2 & 6m-3\gt 6n-1\\ 6n-6m-2 & 6n-1\gt 6m-3\\ 2 & m=n\end{cases}\\ (6m-3) \star _{K_4}(6n)=6m+6n-3\\ (6m-3) \star _{K_4}(6n+1)=\begin{cases} 6m-6n-3 & 6m-3\gt 6n+1\\ 6n-6m+5 & 6n+1\gt 6m-3\end{cases}\\ (6m-2) \star _{K_4}(6n-2)=6m+6n-1\\ (6m-2) \star _{K_4}(6n-1)=6m+6n-5\\ (6m-2) \star _{K_4}(6n)=\begin{cases} 6m-6n-2 & 6m-2\gt 6n\\ 6n-6m+2 & 6n\gt 6m-2\end{cases}\\ (6m-2) \star _{K_4}(6n+1)=6m+6n-2\\ (6m-1) \star _{K_4}(6n-1)=6m+6n-8\\ (6m-1) \star _{K_4}(6n)=\begin{cases} 6m-6n-1 & 6m-1\gt 6n\\ 6n-6m+3 & 6n\gt 6m-1\end{cases}\\ (6m-1) \star _{K_4}(6n+1)=6m+6n-1\\ (6m) \star _{K_4}(6n)=6m+6n\\ (6m) \star _{K_4}(6n+1)=\begin{cases} 6m-6n & 6m\gt 6n+1\\ 6n-6m+1 & 6n+1\gt 6m\end{cases}\\ (6m+1) \star _{K_4}(6n+1)=6m+6n+1\end{cases}$


By using theorem $1$ of Polignac's conjecture we can define function $f:\{(c,d)\,|\, (c,d)\subseteq [0.01,0.1)\}\to\Bbb N$ that $f((c,d))$ is the least $n\in\Bbb N$ that $\exists t\in(c,d),\,\exists k\in\Bbb N$ that $p_n=t\cdot 10^{k+1}$ that $p_n$ is $n$_th prime and $\forall m\ge f((c,d))\,\,\exists u\in (c,d)$ that $u\cdot 10^{m+1}\in\Bbb P$


and $g:(0,0.09)\cap (\bigcup _{k\in\Bbb N} r_k(\Bbb N))\to\Bbb N,$ is a function by $\forall\epsilon\in (0,0.09)\cap (\bigcup _{k\in\Bbb N} r_k(\Bbb N))$ $g(\epsilon)=max(\{f((c,d))\,|\, d-c=\epsilon,$ $(c,d)\subseteq [0.01,0.1)\})$.

Guess $9$: $g$ isn't an injective function.


Question $2$: Assuming guess $9$ let $[a,a]:=\{a\}$ and $\forall n\in\Bbb N,\, h_n$ is the least subinterval of $[0.01,0.1)$ like $[a,b]$ in terms of size of $b-a$ such that $\{\epsilon\in (0,0.09)\cap (\bigcup _{k\in\Bbb N} r_k(\Bbb N))\,|\, g(\epsilon)=n\}\subsetneq h_n$ and it is clear $g(a)=n=g(b)$ now the question is $\forall n,m\in\Bbb N$ that $m\neq n$ is $h_n\cap h_m=\emptyset$?

Guidance given by @reuns from stackexchange.com:
  • For $n \in \mathbb{N}$ then $r(n) = 10^{-\lceil \log_{10}(n) \rceil} n$, ie. $r(19) = 0.19$. We look at the image by $r$ of the primes $\mathbb{P}$.
  • Let $F((c,d)) = \min \{ p \in \mathbb{P}, r(p) \in (c,d)\}$ and $f((c,d)) = \pi(F(c,d))= \min \{ n, r(p_n) \in (c,d)\}$ ($\pi$ is the prime counting function)
  • If you set $g(\epsilon) = \max_a \{ f((a,a+\epsilon))\}$ then try seing how $g(\epsilon)$ is constant on some intervals defined in term of the prime gap $g(p) = -p+\min \{ q \in \mathbb{P}, q > p\}$ and things like $ \max \{ g(p), p > 10^i, p+g(p) < 10^{i+1}\}$


Now I want define a group on $L$ like $(L,\star _L)$.

Let $P_1=\{v_n\,|\,\forall n\in\Bbb N,\, v_n$ is $(n+1)$_th prime$\}$ and $\forall n,m\in\Bbb N,\, v_n\star _3 v_m=v_{n\star m}$ and $\forall (v_n,v_m),(v_s,v_t)\in P_1\times P_1,$ $(v_n,v_m)\star _4(v_s,v_t)=(v_n\star _3 v_s,v_m\star _3 v_t)$.

it is clear $(P_1,\star _3)$ & $(P_1\times P_1,\star _4)$ are groups and $<5>=(P_1,\star _3)\cong (\Bbb Z,+)$ & $<(5,3),(3,5)>=(P_1\times P_1,\star _4)\cong (\Bbb Z\times\Bbb Z,+)$.

and let $h(v_n)$ is the number of digits in $v_n$ and $g((v_n,v_m))=max(h(v_n),h(v_m))+1$.

Question $3$: To define an Abelian group structure on $L$ I need to know: If $g((v_n,v_m))=k_1$ and $g((v_s,v_t))=k_2$ then $g((v_n,v_m)\star_4(v_s,v_t))=?$

Although I guess $(L,\star _L)\cong (\Bbb Q,+)$.


Conjecture $3$: $\forall n\in\Bbb N,\, n\ge 3\,\,\exists s_1,s_2\in P_1$ such that $v_{2n-1}=v_{s_1}\star _3v_{s_2}$.

According to equivalency of these two $(\Bbb N,⋆)$ & $(P_1,⋆_3)$ from aspect of being group, this conjecture is an equivalent to Goldbach's conjecture.
We can pay attention to subgroups as $<v_{s_1}⋆_3v_{s_2}>$ as a solution for Goldbach also we can use quotient groups $P_1/<v_s>$.
There exists an one-to-one correspondence between equations in $(\Bbb Z,+)$ & $(\Bbb N,⋆)$ & $(P_1,⋆_3)$ & $(\Bbb N,⋆_{K_4})$ and prime numbers properties exist in those groups although other sequences may have the same structures but prime numbers structures are specific because the own prime numbers are specific.
There doesn't exist another way to define another group structure on $\Bbb P$ or $P_1$ for using strength of finite groups or infinite groups unless we knew the formula of prime numbers and on the other hand we can't know the formula before than knowing Goldbach and Polignac conjecture.

Question $4$: Is there any subgroup of $P_1$ like $H$ such that $\forall v_s\in H,\, s\notin P_1$?

I want connect subgroups of $P_1$ with Goldbach's conjecture.


Question $5$: To define an Abelian group structure on $\Bbb N$ that is not a finitely generated Abelian group and is isomorph to $(\Bbb Q,+)$, I need to know what is rule of this sequence in $\Bbb N\times\Bbb N$: $(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),...,(1,2k-2),(2,2k-3),...$ $,(k-1,k),(k,k-1),...,(2k-3,2),(2k-2,1),(1,2k-1),(2,2k-2),...,(k,k),...$ $,(2k-2,2),(2k-1,1),...$

Answer given by Professor Daniel Lazard:
$\begin{cases} (a_1,b_1)=(1,1)\\ (a_{n+1},b_{n+1})=\begin{cases} (1,a_n+1) & b_n=1\\ (a_n+1,b_n-1) & \text{else}\end{cases}\end{cases}$
Alireza Badali 22:21, 8 May 2017 (CEST)

Polignac's conjecture

In number theory, Polignac's conjecture was made by Alphonse de Polignac in 1849 and states: For any positive even number $n$, there are infinitely many prime gaps of size $n$. In other words: There are infinitely many cases of two consecutive prime numbers with difference $n$. (Tattersall, J.J. (2005), Elementary number theory in nine chapters, Cambridge University Press, ISBN: 978-0-521-85014-8, p. 112) Although the conjecture has not yet been proven or disproven for any given value of n, in 2013 an important breakthrough was made by Zhang Yitang who proved that there are infinitely many prime gaps of size n for some value of n < 70,000,000.(Zhang, Yitang (2014). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121–1174. MR 3171761. Zbl 1290.11128. doi:10.4007/annals.2014.179.3.7. _ Klarreich, Erica (19 May 2013). "Unheralded Mathematician Bridges the Prime Gap". Simons Science News. Retrieved 21 May 2013.) Later that year, James Maynard announced a related breakthrough which proved that there are infinitely many prime gaps of some size less than or equal to 600.(Augereau, Benjamin (15 January 2013). “An old mathematical puzzle soon to be unraveled? Phys.org. Retrieved 10 February 2013.)

Assuming Polignac's conjecture there isn't any rhythm for prime numbers and so there isn't any formula for prime numbers!


Let $B=\{(x,y)\,|\, 0.01\lt y\lt x\lt 0.1\}$ & $C=(S_1\times S_1)\cap \{(x,x)\,|\, 0.01\le x\lt 0.1\}$ & $T=\{(a,b)\,|\, a,b \in S_1,\, 0.01 \lt b \lt a\lt 0.1,\, \exists m \in \Bbb N,\, a \cdot 10^m, b \cdot 10^m$ or $a\cdot 10^{m-1}, b\cdot 10^m$ are consecutive prime numbers$\}$ & $\forall n \in \Bbb N,\, J_n :=\{(a,b) \,|\, (a,b) \in T,\, \exists k \in \Bbb N, a-b=r_k (2n)\}$.

It is clear $\bigcup _{n\in \Bbb N} J_n=T$ and Polignac's conjecture is equivalent to $\forall n \in \Bbb N,$ cardinal$(J_n)=\aleph_0$.


Guess $1$: $\forall (a,a) \in C$ there are some sequences in $T$ like $\{a_n\}$ that $a_n\to (a,a)$ where $n\to \infty$ and there are some sequences in $T$ like $b_n$ that $b_n\to (0.1,0.01)$ where $n\to \infty$.


Guess $2$: $\exists N_1 \subseteq \Bbb N,\, \forall n\in N_1,$ cardinal$(J_n)=\aleph_0=$cardinal$(N_1)$


It is clear $\exists \epsilon,\epsilon_1,\epsilon_2 \in \Bbb R,\epsilon\gt 0, \epsilon_2\gt \epsilon_1\gt 0$ that $\forall (a,b) \in T \cap \{(x,y)\,|\, 0.01\lt y\lt x\lt 0.1,$ $x-y\lt \epsilon\}$ that $\exists m\in \Bbb N$ that $a\cdot 10^m$,$b\cdot 10^m$ are consecutive prime numbers, but $a\cdot 10^m$,$b\cdot 10^m$ are large natural numbers, and $\forall (a,b)\in T\cap$ $\{(x,y)\,|\, 0.01\lt y\lt x\lt 0.1,$ $0.11-\epsilon_1 \lt x+y\lt 0.11+\epsilon_1,$ $x-y\gt 0.09-\epsilon_2 \}$ that $\exists m\in \Bbb N$ that $a\cdot 10^{m-1},b\cdot 10^m$ are consecutive prime numbers but $a\cdot 10^{m-1}$,$b\cdot 10^m$ are large natural numbers and $\forall (a,b)\in T\setminus (\{(x,y)\,|\, 0.01\lt y\lt x\lt 0.1,$ $x-y\lt \epsilon\}$ $\cup$ $\{(x,y)\,|\, 0.01\lt y\lt x\lt 0.1,$ $0.11-\epsilon_1 \lt x+y\lt 0.11+\epsilon_1,\, x-y\gt 0.09-\epsilon_2 \})$ that $\exists m\in \Bbb N$ that $a\cdot 10^{m-1}$ or $a\cdot 10^m$ & $b\cdot 10^m$ are consecutive prime numbers but $a\cdot 10^m$ or $a\cdot 10^{m-1}$ & $b\cdot 10^m$ aren't large natural numbers.


Theorem: $\forall c\in r_1(\Bbb P)$ cardinal$(T\cap \{(x,c)\,|\, x\in \Bbb R \})=1=$ cardinal$(T\cap \{(c,y)\,|\, y\in \Bbb R\})$

Guess $3$: $\forall k\in \Bbb N,$ $\forall c\in r_k (\Bbb N),\, c\lt 0.09$ then cardinal$(T\cap \{(x,y)\,|\, x-y=c\}) \in \Bbb N \cup \{0\}$.


Theorem $1$: For each subinterval of $[0.01,0.1)$ like $(a,b),\,\exists m\in \Bbb N$ that $\forall k\in \Bbb N$ with $k\ge m$ then $\exists t\in (a,b)$ that $t\cdot 10^{k+1}\in \Bbb P$.

Proof given by @Adayah from stackexchange.com: Without loss of generality (by passing to a smaller subinterval) we can assume that $(a, b) = \left( \frac{s}{10^r}, \frac{t}{10^r} \right)$, where $s, t, r$ are positive integers and $s < t$. Let $\alpha = \frac{t}{s}$.
The statement is now equivalent to saying that there is $m \in \mathbb{N}$ such that for every $k \geqslant m$ there is a prime $p$ with $10^{k-r} \cdot s < p < 10^{k-r} \cdot t$.
We will prove a stronger statement: there is $m \in \mathbb{N}$ such that for every $n \geqslant m$ there is a prime $p$ such that $n < p < \alpha \cdot n$. By taking a little smaller $\alpha$ we can relax the restriction to $n < p \leqslant \alpha \cdot n$.
Now comes the prime number theorem: $$\lim_{n \to \infty} \frac{\pi(n)}{\frac{n}{\log n}} = 1$$
where $\pi(n) = \# \{ p \leqslant n : p$ is prime$\}.$ By the above we have $$\frac{\pi(\alpha n)}{\pi(n)} \sim \frac{\frac{\alpha n}{\log(\alpha n)}}{\frac{n}{\log(n)}} = \alpha \cdot \frac{\log n}{\log(\alpha n)} \xrightarrow{n \to \infty} \alpha$$
hence $\displaystyle \lim_{n \to \infty} \frac{\pi(\alpha n)}{\pi(n)} = \alpha$. So there is $m \in \mathbb{N}$ such that $\pi(\alpha n) > \pi(n)$ whenever $n \geqslant m$, which means there is a prime $p$ such that $n < p \leqslant \alpha \cdot n$, and that is what we wanted.
Clearly the Main theorem of Goldbach's conjecture is a result of theorem $1$.


Theorem: $\forall \epsilon_1,\epsilon_2$ that $0\lt \epsilon_1\lt \epsilon_2\lt 0.09$ then cardinal$(T\setminus \{(x,y)\,|\, 0.01\lt y\lt x\lt 0.1,\, x-y\gt \epsilon_1\})$ $=$ cardinal$(T\setminus \{(x,y)\,|\, 0.01\lt y\lt x\lt 0.1,\, x-y\lt \epsilon_2\})=\aleph_0$.

Proof: Be aware to number of digits in prime numbers corresponding to coordinates of each member in $T$.
Guess $4$: cardinal$(\{(a,b)\,|\, (a,b)\in T,\, 0.01\lt b\lt a\lt 0.1,$ $\epsilon_1\lt a-b\lt \epsilon_2\})\in \Bbb N\cup \{0\}$
Alireza Badali 13:17, 21 August 2017 (CEST)

Landau's forth problem

Landau's forth problem: Are there infinitely many primes $p$ such that $p−1$ is a perfect square? In other words: Are there infinitely many primes of the form $n^2 + 1$?


In analytic number theory the Friedlander–Iwaniec theorem states that there are infinitely many prime numbers of the form ${\displaystyle a^{2}+b^{4}}$.


Suppose $H=\{(a,b)\,|\, a\in\bigcup_{k\in\Bbb N} r_k(\{n^2\,|\, n\in\Bbb N\}),\, b\in\bigcup_{k\in\Bbb N} r_k(\{n^4\,|\, n\in\Bbb N\})$ & $\exists t\in\Bbb N$ that $a\cdot 10^t\in\{n^2\,|\, n\in\Bbb N\},$ $b\cdot 10^t\in\{n^4\,|\, n\in\Bbb N\},\, (a+b)\cdot 10^t\in\Bbb P\}$ and $H_1=\{(a,b)\in H\,|\, b\in\bigcup_{k\in\Bbb N} r_k(\{1\})\}$

Friedlander-Iwaniec theorem is the same cardinal$(H)=\aleph_0$


A question: cardinal$(H_1)\in\Bbb N$ or cardinal$(H_1)=\aleph_0$?

This question is the same Landau's forth problem.
Alireza Badali 20:47, 21 September 2017 (CEST)

Grimm's conjecture

In mathematics, and in particular number theory, Grimm's conjecture (named after Karl Albert Grimm) states that to each element of a set of consecutive composite numbers one can assign a distinct prime that divides it. It was first published in American Mathematical Monthly, 76(1969) 1126-1128.

Formal statement: Suppose $n + 1, n + 2, …, n + k$ are all composite numbers, then there are $k$ distinct primes $p_i$ such that $p_i$ divides $n+i$ for $1 ≤ i ≤ k$.


Let $C=\{(x,y)\,|\, 0.01\le x\lt 0.1,\, 0.01\le y\lt 0.1\}$


A conjecture: Suppose $n+1,n+2,n+3,...,n+k$ are all composite numbers then $\forall i=1,2,3,...,k$ $\exists (r_1(p_i),r_1(t_i))\in C$ that $p_i\in\Bbb P,$ $t_i\in\Bbb N$ & $\forall j=1,2,3,...,k$ that $i\neq j$ implies $p_i\neq p_j$ we have $r_1(p_i)\cdot r_1(t_i)=r_2(n+i)$ or $r_3(n+i)$.

This conjecture is an equivalent to Grimm's conjecture.
Alireza Badali 23:30, 20 September 2017 (CEST)

Lemoine's conjecture

In number theory, Lemoine's conjecture, named after Émile Lemoine, also known as Levy's conjecture, after Hyman Levy, states that all odd integers greater than $5$ can be represented as the sum of an odd prime number and an even semiprime.

Formal definition: To put it algebraically, $2n + 1 = p + 2q$ always has a solution in primes $p$ and $q$ (not necessarily distinct) for $n > 2$. The Lemoine conjecture is similar to but stronger than Goldbach's weak conjecture.


Theorem: $\forall n\in\Bbb N$ that $m=2n+5,\, \exists (a,b)\in\{(x,y)\,|\, 0\lt y\le x,\, x+y\lt 0.1,\, x,y\in S_1,\, \exists t\in\Bbb N,$ $x\cdot 10^t,y\cdot 10^t\in\Bbb P\},\,\exists k\in\Bbb N,\, \exists c\in r_k(\Bbb P)$ such that $a+b=r_1(m)-c$

In principle $(r_1(m),-c)\in \{(x,y)\,|\, -x\lt y\lt 0,\, 0.01\le x\lt 0.1\}$
This theorem is an equivalent to Goldbach's weak conjecture.


A conjecture: $\forall n\in\Bbb N$ that $m=2n+5,\, \exists k_1,k_2\in\Bbb N,\, \exists b\in r_{k_1}(\Bbb P)$ that $b\lt 0.05,\, \exists a\in r_{k_2}(\Bbb P)$ such that $2b=r_1(m)-a$

In principle $(b,b)\in\{(x,x)\,|\, 0\lt x\lt 0.05\}$ & $(r_1(m),-a)\in\{(x,y)\,|\, -x\lt y\lt 0,\, 0.01\le x\lt 0.1\}$
This conjecture is an equivalent to Lemoine's conjecture.
Alireza Badali 00:30, 27 September 2017 (CEST)

Some new functions related to zeta function

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem).

In analytic number theory in Riemann zeta function there is an important technique as $\frac{1}{n}$, inverse of natural numbers but I want add another technique to this collection as putting a point at the beginning of natural numbers like $6484070\to 0.6484070$ so we will have a stronger theory, let $S=\{0.2,0.3,0.5,0.7,0.11,...\}$ and $s_1=0.2,\, s_2=0.3,\, s_3=0.5,...$ that $s_k$ is $k$_th member in $S$.


Suppose $A_n=\{s_is_j\,|\, s_i,s_j\in \{s_1,s_2,s_3,...,s_n\},$ $s_i\neq s_j\}$ & $\mu _1:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _1(z)=\lim_{n\to\infty}\frac{1}{n^2}\sum _{a\in A_n} a^{-f(z)}$$

such that $f:\Bbb C\to\Bbb C$ is an injective function that $\forall n\in\Bbb N,\,\forall z\in\Bbb C,\, n^{f(z)}$ isn't a Gaussian integer, for example $$\forall z\in\Bbb C\,\,\,\,\,\,\,\,\,\, f(z)=\sqrt 2 +\frac{z}{N+|z|}$$ for large sufficiently $N\in\Bbb N$ of course $f$ maps $\Bbb C$ injectively into a disk around $\sqrt 2$ of radius $N^{-1}$ for large sufficiently $N,$ this disk contains no solution $z$ of $n^z\in\Bbb Z [i]$, according to definition of the function $\mu _1$ I think it is in a near relation with Riemann zeta function.


Let $\mu _2:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _2(z)=\sum _{n=1}^{\infty}\frac{1}{(r(n))^z}$$

Let $\mu _3:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _3(z)=\sum _{p\in\Bbb P}\frac{1}{(r(p))^z}$$

Let $\forall j\in\Bbb N,\,\mu _4:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _4(z)=\sum _{n=1}^{\infty}\frac{1}{(r_j(n))^z}$$

Let $\forall j\in\Bbb N,\,\mu _5:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _5(z)=\sum _{p\in\Bbb P}\frac{1}{(r_j(p))^z}$$

and $\mu _6:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _6(z)=\lim _{j\to\infty}\sum _{n=1}^{\infty}\frac{1}{(r_j(n))^z}$$

Let $\mu _7:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _7(z)=\lim _{j\to\infty}\sum _{p\in\Bbb P}\frac{1}{(r_j(p))^z}$$

let $\mu _8:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _8(z)=\sum _{j\in\Bbb N}\frac{1}{(r_j(j))^z}$$

Let $p_j$ is $j$_th prime number & $\mu _9:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _9(z)=\sum _{j\in\Bbb N}\frac{1}{(r_j(p_j))^z}$$

Let $a_n:\Bbb N\to\Bbb N$ is a sequence & $\mu _{10}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _{10}(z)=\sum _{n\in\Bbb N}\frac{1}{(r_{a_n}(n))^z}$$

Let $a_n:\Bbb N\to\Bbb N$ is a sequence & $\mu _{11}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _{11}(z)=\sum _{n\in\Bbb N}\frac{1}{(r_{a_n}(p_n))^z}$$

Let $\omega =0.p_1p_2p_3...=0.23571113171923293137...$ that in principle in $\omega$ prime numbers has been arranged respectively, now assume $a_n:\Bbb N\to (0,1)$ is a sequence that $\sum _{n\in\Bbb N} a_n=\omega$ & $\mu _{12}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\,\,\,\,\,\,\,\,\,\,\mu _{12}(z)=\sum _{n\in\Bbb N}\frac{1}{(a_n)^z}$$

Let $f_1:\Bbb C\to\Bbb C$ & $\mu _{13}:\Bbb C\to\Bbb C$ are functions as: $$\forall z\in\Bbb C\qquad\mu _{13}(z)=\sum _{n=1}^{\infty} (-1)^n\cdot (r(n))^{f_1(z)}$$

Let $f_2:\Bbb C\to\Bbb C$ & $\mu _{14}:\Bbb C\to\Bbb C$ are functions as: $$\forall z\in\Bbb C\qquad\mu _{14}(z)=\sum _{p_n\text{is}\, n\text{_th prime number}} (-1)^n\cdot (r(p_n))^{f_2(z)}$$

Find $f_1$ & $f_2$ as much as possible simple such that $\mu _{13}(i[\Bbb Q])$ is dense in the $\mu _{13}(\Bbb C)$ and $\mu _{14}(i[\Bbb Q])$ is dense in the $\mu _{14}(\Bbb C)$.

Now some theorems on these functions about density should be presented.


Let $\mu_{15}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _{15}(z)=\sum _{j\in\Bbb N}\sum _{n\in\Bbb N\cap [10^{j-1},10^j)} (r_j(n))^z$$

Let $\mu_{16}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _{16}(z)=\sum _{j\in\Bbb N}\sum _{p\in\Bbb P\cap (10^{j-1},10^j)} (r_j(p))^z$$


Formula of prime numbers can't be as polynimial and it should be a logarithmic function:

Let $$\omega _1=\color{red}{0}.\color{teal}{p_1}\color{purple}{p_2}\color{teal}{p_3}\dots =\color{red}{0}.\color{blue}{2}\color{fuchsia}{3}\color{blue}{5}\color{fuchsia}{7}\color{blue}{11}\color{fuchsia}{13}\color{blue}{17}\color{fuchsia}{19}\color{blue}{23}\color{fuchsia}{29}\color{blue}{31}\color{fuchsia}{37}\dots \color{blue}{7717}\color{fuchsia}{7723}\dots$$

(i.e. the decimal part of $\omega _1$ is obtained by concatenating the prime numbers) and

$$\omega _2=\color{red}{0}.\color{blue}{2}0\color{fuchsia}{3}0\color{blue}{5}0\color{fuchsia}{7}0\color{blue}{11}00\color{fuchsia}{13}00\color{blue}{17}00\color{fuchsia}{19}00\color{blue}{23}00\color{fuchsia}{29}00\color{blue}{31}00\color{fuchsia}{37}00\dots\color{blue}{7717}0000\dots$$

(i.e. the decimal part of $\omega _2$ is obtained by concatenating the prime numbers, each of them followed by a number of copies of $0$ equal to the number of its digits in base $10$).

Questions:

$1.$ Is $\omega _1$ or $\omega _2$ or another some similar number transcendental, and if yes is this a contradiction to the existence of a formula for prime numbers?

$2.$ For each sequence $a_n: \mathbb N \to \mathbb N$ is there any sequence like $b_n: \mathbb N \to \mathbb N$ such that the number $\theta :=0.a_10 \dots 0a_20 \dots 0a_30 \dots 0 \dots$ obtained by concatenating the numbers $a_n$, each of them followed by a number of copies of $0$ equal to $b_n$, is a transcendental number?

Alireza Badali 20:44, 12 October 2017 (CEST)

Some notes

I see, you like to densely embed natural numbers into a continuum. You may also try to embed them into the unit circle on the complex plane by $n\mapsto i^n=\cos(\log n)+i\sin(\log n)$. Then $(mn)^i=m^i n^i$. Passer By (talk) 13:14, 3 December 2017 (CET)

Very nice, thank you so much. Alireza Badali 21:33, 3 December 2017 (CET)

To your Question 2 above: the affirmative answer is given by Liouville's theorem on approximation of algebraic numbers. Passer By (talk) 19:05, 4 December 2017 (CET)

Thank you. Alireza Badali 16:00, 6 December 2017 (CET)

Question

You often mention "Formula of prime numbers". What do you mean? This is not a well-defined mathematical object, but a vague idea, with a lot of non-equivalent interpretations. See for instance [1], [2], [3], [4], [5], [6] etc. Passer By (talk) 19:24, 4 December 2017 (CET)

Thank you and each one of these wordage about the formula of prime numbers is a theory lonely and probably non-equivalent or even incompatible so please don't consider their relations together. Alireza Badali 16:00, 6 December 2017 (CET)
OK, then I do not consider these interpretations of the phrase "Formula of prime numbers" (since yours is different from them all). My question is, what is your interpretation of the phrase "Formula of prime numbers"? We cannot ask "does it exist or not" if we do not know what exactly is meant by "it". The answer is affirmative for some interpretations and negative for other interpretations. Passer By (talk) 20:08, 6 December 2017 (CET)
Formula of prime numbers is a subsequence in $\Bbb N$ that has a special order and this order is the same formula of prime numbers, but this order isn't located on a polynomial necessarily.

Why don't you introduce yourself? do you want close my account? Alireza Badali 21:36, 6 December 2017 (CET)

I know what is a sequence and subsequence, and I understand that prime numbers may be treated as a subsequence of the sequence of natural numbers; but I do not know what is "special order"; I also do not know what is "order located on a polynomial"; thus, I get no answer to my question.
But do not worry: being not an admin, I cannot close your account. I only can lose interest to your text. Passer By (talk) 23:52, 6 December 2017 (CET)
How to Cite This Entry:
Musictheory2math. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Musictheory2math&oldid=42441