Namespaces
Variants
Actions

Difference between revisions of "User:Richard Pinch/sandbox-5"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Möbius inversion for arithmetic functions, using text from Möbius series)
(→‎Möbius inversion for arithmetic functions: cite Baker, Hardy & Wright 6th ed)
Line 28: Line 28:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Möbius,  "Ueber eine besondere Art der Umkehrung der Reihen"  ''J. Reine Angew. Math.'' , '''9'''  (1832)  pp. 105–123</TD></TR>
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Möbius,  "Ueber eine besondere Art der Umkehrung der Reihen"  ''J. Reine Angew. Math.'' , '''9'''  (1832)  pp. 105–123 {{DOI|10.1515/crll.1832.9.105}} {{ZBL|009.0333cj}}</TD></TR>
<TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Vinogradov,  "Elements of number theory" , Dover, reprint  (1954)  (Translated from Russian)</TD></TR>
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Vinogradov,  "Elements of number theory" , Dover, reprint  (1954)  (Translated from Russian) {{ZBL|0057.28201}}</TD></TR>
<TR><TD valign="top">[3]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung" , Springer  (1957)</TD></TR>
+
<TR><TD valign="top">[3]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung" , Springer  (1957) {{ZBL|0080.25901}}</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  Alan Baker,  "A concise introduction to the theory of numbers" Cambridge University Press (1984) ISBN 0-521-28654-9 {{ZBL|0554.10001}}</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top">  G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" (6th edition, edited and revised by D. R. Heath-Brown and J. H. Silverman with a foreword by Andrew Wiles) Oxford University Press (2008) ISBN 978-0-19-921986-5 {{ZBL|1159.11001}}</TD></TR>
 
</table>
 
</table>

Revision as of 21:28, 30 April 2016

Gray map

A map from $\mathbf{Z}_4$ to $\mathbf{F}_2^2$, extended in the obvious way to $\mathbf{Z}_4^n$ and $\mathbf{F}_2^n$ which maps Lee distance to Hamming distance. Explicitly, $$ 0 \mapsto 00 \ ,\ \ 1 \mapsto 01 \ ,\ \ 2 \mapsto 11 \ ,\ \ 3 \mapsto 10 \ . $$

The map instantiates a Gray code in dimension 2.

Möbius inversion for arithmetic functions

The original form of Möbius inversion developed by F. Möbius for arithmetic functions.

Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: $$ F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . $$

Another inversion formula: If $P(n)$ is a totally multiplicative function for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then $$ g(x) = \sum_{n \le x} P(n) f(x/n) $$ implies $$ f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . $$

All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under Dirichlet convolution, cf. (the editorial comments to) Möbius function and Multiplicative arithmetic function.

References

[1] A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" J. Reine Angew. Math. , 9 (1832) pp. 105–123 DOI 10.1515/crll.1832.9.105 Zbl 009.0333cj
[2] I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) Zbl 0057.28201
[3] K. Prachar, "Primzahlverteilung" , Springer (1957) Zbl 0080.25901
[4] Alan Baker, "A concise introduction to the theory of numbers" Cambridge University Press (1984) ISBN 0-521-28654-9 Zbl 0554.10001
[5] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" (6th edition, edited and revised by D. R. Heath-Brown and J. H. Silverman with a foreword by Andrew Wiles) Oxford University Press (2008) ISBN 978-0-19-921986-5 Zbl 1159.11001
How to Cite This Entry:
Richard Pinch/sandbox-5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-5&oldid=38741