Namespaces
Variants
Actions

User:Richard Pinch/sandbox-11

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Honeycomb

"A symmetrical subdivision of a three-dimensional manifold into a number of polyhedral cells all alike, each rotation that is a symmetry of a cell being also a symmetry of the entire configuration."

A regular honeycomb is described by a Schläfli symbol $\{p,q,r\}$ denoting polyhedral cells that are Platonic solids $\{p,q\}$, such that every face $\{p\}$ belongs to just two cells, and every edge to $r$ cells.

References

  • H.S.M. Coxeter "Twisted honeycombs", Conference Board of the Mathematical Sciences. Regional Conference Series in Mathematics. No.4. American Mathematical Society (1970) ISBN 0-8218-1653-5 Zbl 0217.46502
  • H.S.M. Coxeter, "Regular complex polytopes" , Cambridge Univ. Press (1974) ISBN 0-521-20125-X Zbl 0732.51002

Schläfli symbol

A symbol encoding classes of polygons, polyhedra, polytopes and tessellations.

The symbol $\{p\}$ denotes a regular $p$-gon; the symbol $\{p,q\}$ a polyhedron with faces which are regular $p$-gons, $q$ of which meet at each vertex. The Platonic solids correspond to:

There are three plane tessellations: $\{3,6\}$, $\{4,4\}$, $\{6,3\}$. The dual solid or tessellation to $\{p,q\}$ is $\{q,p\}$.

The symbol $\{p,q,r\}$ denotes a polytope in four dimensions or a honeycomb.

The plane symbol may be extended to $\left\lbrace\frac{p}{q}\right\rbrace$ (where $p,q$ are coprime) denoting a $p$-gram or star polygon: a figure inscribed in a regular $p$-gon by joining every $q$-th vertex.

References

  • H.S.M. Coxeter, "Regular complex polytopes" , Cambridge Univ. Press (1974) ISBN 0-521-20125-X Zbl 0732.51002

Glide

glide reflection

An indirect (orientation-reversing) Euclidean isometry. In the plane, given a line $\ell$, a glide with axis $\ell$ is the composite of a translation in the direction of $\ell$ and reflection in $\ell$ as mirror. In space, given a plane $\Pi$, a glide is the composite of a translation parallel to $\Pi$ and reflection in $\Pi$.

The indirect isometries of the Euclidean plane are all glide reflections (including reflections as a special case). The indirect isometries of Euclidean space are either glide reflections or rotatory reflections (including reflections as a special case).


References

  • H. S. M. Coxeter, "The Beauty of Geometry: Twelve Essays" Dover (1999) ISBN 0486409198 Zbl 0941.51001
  • E.G. Rees, "Notes on Geometry" Springer (1983)) ISBN 3-540-12053-X Zbl 0498.51001

Rotatory reflection

rotatory inversion

An indirect (orientation-reversing) isometry of Euclidean space. Given a plane $\Pi$ and a line $\ell$ perpendicular to $\Pi$, a rotatory reflection is the composite of a rotation with $\ell$ as axis and reflection in $\Pi$.

A rotatory inversion: given a line $\ell$ and a point $P$ on $\ell$, the composite of a rotation with $\ell$ as axis and central inversion (or reflection) in the point $P$.

Every rotatory reflection can be expressed as a rotatory inversion, and conversely.

The indirect isometries of Euclidean space are either rotatory reflections or glide reflections (including reflections as a special case).

References

  • H. S. M. Coxeter, "The Beauty of Geometry: Twelve Essays" Dover (1999) ISBN 0486409198 Zbl 0941.51001
  • E.G. Rees, "Notes on Geometry" Springer (1983)) ISBN 3-540-12053-X Zbl 0498.51001


Central inversion

central symmetry, reflection in a point

An isometry of a Euclidean space with respect to a centre $O$. The image of point $A$ is that point $A'$ on the line $\overline{OA}$ such that $A'O = OA$. In the Euclidean plane, this is a rotation by a half-turn about the point $O$.


References

  • H. S. M. Coxeter, "The Beauty of Geometry: Twelve Essays" Dover (1999) ISBN 0486409198 Zbl 0941.51001
  • E.G. Rees, "Notes on Geometry" Springer (1983)) ISBN 3-540-12053-X Zbl 0498.51001
How to Cite This Entry:
Richard Pinch/sandbox-11. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-11&oldid=42554