Namespaces
Variants
Actions

User:Richard Pinch/sandbox-10

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Cantor–Bendixson characteristics

Ordinal number invariants of a Boolean algebra. Let $B$ be a Boolean algebra, and $I(B)$ the ideal generated by the atoms. We have $I(B) = B$ if and only if $B$ is finite. We recursively define ideals $I_\alpha$ for ordinal numbers $\alpha$, together with homomorphisms $\pi_\alpha$ and algebras $B_\alpha$ with $\pi_\alpha : B \rightarrow B_\alpha$ with kernel $I_\alpha$, as follows: $I_0(B) =\{0\}$; if $\alpha = \beta+1$ then $I_\alpha = \pi_\beta^{-1}(B_\beta)$ and if $\alpha$ is a limit ordinal then $I_\alpha = \cup_{\beta<\alpha} I_\beta$. There is a least $\alpha$ such that $I_\alpha = I_\gamma$ for all $\gamma > \alpha$.

If $B$ is a superatomic Boolean algebra then each $A_\alpha$ is atomic and the sequence $I_\alpha$ stabilises at $\alpha$ with $\alpha=\beta+1$ where $\beta$ is the least ordinal such that $A_\beta$ is finite. The Cantor–Bendixson characteristics of $A$ are the quantities $(\beta,n)$ where $n$ is the number of atoms in $A_\beta$. The Cantor–Bendixson height or rank is $\beta$.

For countable superatomic Boolean algebras, the Cantor–Bendixson characteristics determine the isomorphism class.

For a topological space $X$, we may analogously define a Cantor–Bendixson rank as follows. Let $X_0 = X$ and for ordinal $alpha$ let $X_{\alpha+1}$ be the derived set of $X_\alpha$. If $\lambda$ is a limit ordinal, let $X_\lambda = \cap_{\alpha<\lambda} X_\alpha$. The sequence $(X_\alpha)$ is descending and the smallest $\alpha$ such that $X_{\alpha+1} = X_\alpha$ is the Cantor–Bendixson rank of $X$.

An analogous definition can be made for any partial ordered set $(A,{<})$ equipped with a map $f:A\rightarrow A$ such that $f(x) \le x$.

References

  • Winfried Just, Martin Weese, "Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician", American Mathematical Society (1997) ISBN 0-8218-7208-7 Zbl 0887.03036

Superatomic Boolean algebra

A Boolean algebra for which every homomorphic image is atomic. Equivalently, the Stone space is scattered: has no dense-in-itself subset.

Countable superatomic Boolean algebras are determined up to isomorphism by their Cantor–Bendixson characteristics.

References

  • Winfried Just, Martin Weese, "Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician", American Mathematical Society (1997) ISBN 0-8218-7208-7 Zbl 0887.03036
  • J. Roitman, "Superatomic Boolean algebras" J.D. Monk (ed.) R. Bonnet (ed.) , Handbook of Boolean algebras , 1–3 , North-Holland (1989) pp. Chapt. 19; pp. 719–740 Zbl 0671.06001

S-space

A topological space which is regular Hausdorff hereditarily separable but not hereditarily Lindelöf. Dually, an L-space is regular Hausdorff hereditarily Lindelöf but not hereditarily separable. The question of the existence of S-spaces and L-spaces is connected to the Suslin problem. A Suslin line is an L-space, and an S-space may be constructed from a Suslin line. It is know that non-existence of an S-space is consistent with ZFC.

How to Cite This Entry:
Richard Pinch/sandbox-10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-10&oldid=51390