Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(206 intermediate revisions by the same user not shown)
Line 1: Line 1:
$\newcommand{\Om}{\Omega}
+
<ref> [http://hea-www.harvard.edu/AstroStat http://hea-www.harvard.edu/AstroStat]; <nowiki> http://www.incagroup.org </nowiki>; <nowiki> http://astrostatistics.psu.edu </nowiki> </ref>
\newcommand{\F}{\mathcal F}
 
\newcommand{\B}{\mathcal B}
 
\newcommand{\M}{\mathcal M} $
 
A [[probability space]] is called '''standard''' if it satisfies the following equivalent conditions:
 
* it is [[Measure space#Isomorphism|almost isomorphic]] to the real line with some [[probability distribution]] (in other words, a [[Measure space#Completion|completed]] [[Borel measure|Borel]] [[probability measure]], that is, a [[Lebesgue–Stieltjes integral|Lebesgue–Stieltjes]] probability measure);
 
* it is a [[standard Borel space]] endowed with a [[probability measure]], completed, and possibly augmented with a [[Measure space#null|null set]];
 
* it is [[Measure space#Completion|complete]], [[Measure space#Perfect and standard|perfect]], and the [[Hilbert space#L2 space|corresponding Hilbert space]] is separable.
 
  
====The isomorphism theorem====
+
====Notes====
 +
<references />
  
Every standard probability space consists of an [[Measure space#Atoms and continuity|atomic]] (discrete) part and an atomless (continuous) part (each part may be empty). The discrete part is finite or countable; here, all subsets are  measurable, and the probability of each subset is the sum of probabilities of its elements.
+
-------------------------------------------
  
'''Theorem 1.''' All atomless standard probability spaces are mutually almost isomorphic.
 
  
That  is, up to almost isomorphism we have "the" atomless standard probability space. Its "incarnations" include the spaces $\R^n$ with atomless probability distributions (be they [[Continuous distribution|absolutely continuous]], [[Singular distribution|singular]] or mixed), as well as the set of all continuous functions $[0,\infty)\to\R$ with the [[Wiener measure]]. That is instructive: topological notions such as dimension, connectedness, compactness etc. do not apply to probability spaces.
+
{|
 
+
| A || B || C
====Measure preserving maps====
+
|-
 
+
| X || Y || Z
The inverse to a bijective [[Measure space#measure preserving|measure preserving]] map is measure preserving provided that it is measurable; in this (not general) case the given map is a [[Measure space#Isomorphism|strict isomorphism]]. Here is an important fact in two equivalent forms.
+
|}
 
 
'''Theorem 2a.''' Every bijective measure preserving map between standard probability spaces is a strict isomorphism.
 
 
 
'''Theorem 2b.''' If $(\Om,\F,P)$ is a standard probability space and $\F_1\subset\F$ a sub-σ-field such that $(\Om,\F_1,P|_{\F_1})$ is also standard then $\F_1=\F$.
 
 
 
Recall a topological fact similar to Theorem 2: if a bijective map  between compact Hausdorff topological spaces is continuous then it is a homeomorphism. Moreover, if a Hausdorff topology is  weaker than a compact topology then these two topologies are equal,  which has the following measure-theory counterpart stronger than Theorem 2 (in two equivalent forms).
 
Here we call a probability space ''countably separated'' if its underlying measurable space is [[Measurable space#separated|countably separated]].
 
 
 
'''Theorem 3a.''' Every bijective measure preserving map from a standard probability space to a  countably separated complete probability space  is a strict isomorphism.
 
 
 
'''Theorem 3b.''' If $(\Om,\F,P)$ is a standard probability space and $\F_1\subset\F$ is a countably separated sub-σ-field then $(\Om,\F,P)$ is the completion of $(\Om,\F_1,P|_{\F_1})$.
 
 
 
A continuous image of a compact topological space is always a compact set. In contrast, the image of a measurable set under a (non-bijective) measure-preserving map need not be measurable (indeed, the image of a null set need not be null; try the projection $\R^2\to\R^1$). Nevertheless, Theorem 4 (below) is a partial measure-theory counterpart, stronger than Theorem 3.
 
  
'''Theorem 4.''' Let $(\Om,\F,P)$ be a standard probability space, $(\Om_1,\F_1,P_1)$ a countably separated complete probability space, and $f:\Om\to\Om_1$ a measure preserving map. Then $(\Om_1,\F_1,P_1)$ is also standard, and $A_1\in\F_1\iff A\in\F$ whenever $A_1\subset\Om_1$ and $A=f^{-1}(A_1)$. In particular, the image $f(\Om)$belongs to $\F_1$. (See {{Cite|R|Th. 3-2}} and {{Cite|H|Prop. 9}}.)
 
  
====Quotient spaces====
 
  
Theorem 4 (above) will be combined with the bijective correspondence between sub-σ-fields and linear sublattices described in the [[Measure space#Sub-σ-algebras and linear sublattices|corresponding section of "Measure space"]]. Here, as well as there, ''we restrict ourselves to σ-fields that contain all null  sets.''
+
-----------------------------------------
 +
-----------------------------------------
  
Every measure preserving map $\alpha:\Om\to\Om'$ between standard probability spaces $(\Om,\F,P)$ and $(\Om',\F',P')$ leads to an embedding $f\mapsto f\circ\alpha$ of Hilbert spaces, $L_2(\Om',\F',P')\to L_2(\Om,\F,P)$. It is, moreover, an embedding of linear lattices, and therefore $L_2(\Om',\F',P')=L_2(\Om,\F_1,P|_{\F_1})$ (both embedded into $L_2(\Om,\F,P)$) for some sub-σ-field $\F_1\subset\F$. Clearly, $\F_1$ is generated by $\alpha$ (up to the null sets), and we may say that $(\Om',\F',P')$ is the ''quotient space'' of $(\Om,\F,P)$ by $\F_1$ (via $\alpha$).
+
$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$
  
''Existence.'' Let $(\Om,\F,P)$ be a standard probability space and $\F_1\subset\F$ a sub-σ-field; then $\F_1$ is generated by some $\alpha$ (as above), which means existence of a quotient space of $(\Om,\F,P)$ by $\F_1$. Here is how to do it. Using separability of $L_2(\Om,\F_1,P|_{\F_1})$ one constructs a measurable map $\alpha:\Om\to\Om'$ from $(\Om,\F,P)$ to a standard measurable space $(\Om',\B)$ such that a function of $L_2(\Om,\F,P)$ belongs to $L_2(\Om,\F_1,P|_{\F_1})$ if and only if it is of the form $g\circ\alpha$ for some measurable $g:\Om'\to\R$. Taking the image of the measure $P$ under $\alpha$ and applying Theorem 4 one gets a standard probability space $(\Om',\F',P')$ and a measure preserving map $\alpha:\Om\to\Om'$ that generates $\F_1$.
+
<asy>
 +
size(100,100);
 +
label(scale(1.7)*'$T(\\Sigma)\hookrightarrow T(\\Sigma,X)$',(0,0));
 +
</asy>
  
''Uniqueness.'' If also $(\Om'',\F'',P'')$ is the quotient space of $(\Om,\F,P)$ by $\F_1$ (via $\beta$) then there exists an almost isomorphism $\gamma$ from $(\Om',\F',P')$ to $(\Om'',\F'',P'')$ such that $\gamma\circ\alpha=\beta$, which means uniqueness of the quotient space up to almost isomorphism.
+
<asy>
 +
size(220,220);
  
Existence of $\gamma$ (above) follows from the following fact. Let $(\Om,\F,P)$, $(\Om',\F',P')$ and $(\Om'',\F'',P'')$ be standard probability spaces, and $\alpha:\Om\to\Om'$, $\beta:\Om\to\Om''$ measure preserving maps. If the sub-σ-field generated by $\alpha$ is contained in the sub-σ-field generated by $\beta$ then $\gamma\circ\alpha=\beta$ for some (almost unique) measure preserving map $\gamma:\Om'\to\Om''$.
+
import math;
  
====On terminology====
+
int kmax=40;
  
Also "Lebesgue-Rokhlin space" and "[[Lebesgue space]]".
+
guide g;
 +
for (int k=-kmax; k<=kmax; ++k) {
 +
  real phi = 0.2*k*pi;
 +
  real rho = 1;
 +
  if (k!=0) {
 +
    rho = sin(phi)/phi;
 +
  }
 +
  pair z=rho*expi(phi);
 +
  g=g..z;
 +
}
 +
 
 +
draw (g);
  
====References====
+
defaultpen(0.75);
 +
draw ( (0,0)--(1.3,0), dotted, Arrow(SimpleHead,5) );
 +
dot ( (1,0) );
 +
label ( "$a$", (1,0), NE );
  
{|
+
</asy>
|valign="top"|{{Ref|I}}||  Kiyosi Itô, "Introduction to probability theory", Cambridge (1984). &nbsp; {{MR|0777504}} &nbsp; {{ZBL|0545.60001}}
 
|-
 
|valign="top"|{{Ref|R}}||Thierry de la Rue, "Espaces de Lebesgue", ''Séminaire de Probabilités XXVII,'' Lecture Notes in Mathematics, 1557 (1993), Springer, Berlin, pp. 15–21. &nbsp;  {{MR|1308547}} &nbsp; {{ZBL|0788.60001}}
 
|-
 
|valign="top"|{{Ref|H}}||  Jean Haezendonck, "Abstract  Lebesgue-Rohlin  spaces",  ''Bull. Soc.  Math. de Belgique'' '''25'''  (1973), 243–258.  &nbsp;  {{MR|0335733}} &nbsp;  {{ZBL|0308.60006}}
 
|-
 
|valign="top"|{{Ref|B}}|| V.I. Bogachev, "Measure theory",  Springer-Verlag (2007). &nbsp;  {{MR|2267655}}  &nbsp;{{ZBL|1120.28001}}
 
|-
 
|valign="top"|{{Ref|C}}|| Donald L. Cohn, "Measure theory", Birkhäuser (1993). &nbsp;    {{MR|1454121}} &nbsp;  {{ZBL|0860.28001}}
 
|-
 
|valign="top"|{{Ref|D}}||  Richard M. Dudley, "Real analysis and probability",  Wadsworth&Brooks/Cole (1989). &nbsp; {{MR|0982264}} &nbsp;  {{ZBL|0686.60001}}
 
|-
 
|valign="top"|{{Ref|M}}||  George  W.  Mackey,  "Borel structure in groups and their duals",  ''Trans.  Amer.  Math. Soc.''  '''85''' (1957), 134–165. &nbsp; {{MR|0089999}}  &nbsp; {{ZBL|0082.11201}}
 
|-
 
|valign="top"|{{Ref|K}}|| Alexander  S.  Kechris,  "Classical  descriptive set theory", Springer-Verlag  (1995).  &nbsp;  {{MR|1321597}} &nbsp; {{ZBL|0819.04002}}
 
|}
 

Latest revision as of 07:12, 13 March 2016

[1]

Notes

  1. http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org ; http://astrostatistics.psu.edu


A B C
X Y Z




$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21448