Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(280 intermediate revisions by the same user not shown)
Line 1: Line 1:
$\newcommand{\Om}{\Omega}
+
<ref> [http://hea-www.harvard.edu/AstroStat http://hea-www.harvard.edu/AstroStat]; <nowiki> http://www.incagroup.org </nowiki>; <nowiki> http://astrostatistics.psu.edu </nowiki> </ref>
\newcommand{\A}{\mathcal A}
 
\newcommand{\B}{\mathcal B}
 
\newcommand{\M}{\mathcal M} $
 
The term '''"universally measurable"''' may be applied to
 
* a [[measurable space]];
 
* a subset of a measurable space;
 
* a [[metric space]].
 
  
Let $(X,\A)$ be a measurable space. A ''subset'' $A\subset X$ is called ''universally measurable'' if it is $\mu$-measurable for every finite measure $\mu$ on $(X,\A)$. In other words: $\mu_*(A)=\mu^*(A)$ where $\mu_*,\mu^*$ are the inner and outer measures for $\mu$, that is,
+
====Notes====
: $ \mu_*(A) = \max\{\mu(B):B\in\A,B\subset A\}\,,\quad
+
<references />
\mu^*(A) = \min\{\mu(B):B\in\A,B\supset A\}\,.$
 
(See {{Cite|S|p. 170}}.)
 
  
A separable ''metric space'' is called ''universally measurable'' if it is a universally measurable subset (as defined above) of its [[Metric space#completion|completion]]. Here the completion, endowed with the [[Measurable space#Borel sets|Borel σ-algebra]], is treated as a measurable space. (See {{Cite|S|p. 170}}, {{Cite|D|Sect. 11.5}}.)
+
-------------------------------------------
  
A ''measurable space''  is called ''universally measurable'' if it is [[Measurable space#isomorphic|isomorphic]] to some universally measurable metric space (as defined above) with the Borel σ-algebra. (See {{Cite|S|p. 171}}.)
 
  
'''Theorem 1''' (Shortt). A [[Measurable space#countably generated|countably generated]] [[Measurable space#separated|separated]] measurable space $(X,\A)$ is universally measurable if and only if for every finite measure $\mu$ on $(X,\A)$ there exists a subset $A\in\A$ of full measure (that is, $\mu(X\setminus A)=0$) such that $A$ (treated as a [[Measurable space#subspace|subspace]]) is itself a [[standard Borel space]]. ({{Cite|S|Lemma 4}})
+
{|
 +
| A || B || C
 +
|-
 +
| X || Y || Z
 +
|}
 +
 
 +
 
 +
 
 +
-----------------------------------------
 +
-----------------------------------------
 +
 
 +
$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$
 +
 
 +
<asy>
 +
size(100,100);
 +
label(scale(1.7)*'$T(\\Sigma)\hookrightarrow T(\\Sigma,X)$',(0,0));
 +
</asy>
 +
 
 +
<asy>
 +
size(220,220);
 +
 
 +
import math;
  
'''Theorem 2''' (Shortt). The following two conditions on a separable metric space are equivalent:
+
int kmax=40;
:(a) it is a universally measurable metric space;
 
:(b) the corresponding measurable space (with the Borel σ-algebra) is universally measurable.
 
  
Evidently, (a) implies (b); surprisingly, also (b) implies (a), which involves a Borel isomorphism (rather than isometry or homeomorphism) between two metric spaces.
+
guide g;
 +
for (int k=-kmax; k<=kmax; ++k) {
 +
  real phi = 0.2*k*pi;
 +
  real rho = 1;
 +
  if (k!=0) {
 +
    rho = sin(phi)/phi;
 +
  }
 +
  pair z=rho*expi(phi);
 +
  g=g..z;
 +
}
 +
 
 +
draw (g);
  
====References====
+
defaultpen(0.75);
 +
draw ( (0,0)--(1.3,0), dotted, Arrow(SimpleHead,5) );
 +
dot ( (1,0) );
 +
label ( "$a$", (1,0), NE );
  
{|
+
</asy>
|valign="top"|{{Ref|S}}||  Rae M. Shortt, "Universally measurable spaces: an invariance theorem and diverse characterizations", ''Fundamenta Mathematicae'' '''121''' (1984), 169–176.  &nbsp; {{MR|0765332}} &nbsp; {{ZBL|0573.28018}}
 
|-
 
|valign="top"|{{Ref|N}}|| Togo Nishiura, "Absolute measurable spaces",  Cambridge (2008). &nbsp;  {{MR|}} &nbsp;  {{ZBL|0992.60001}}
 
|-
 
|valign="top"|{{Ref|P}}||  David Pollard, "A user's guide to  measure theoretic probability",  Cambridge (2002). &nbsp;  {{MR|1873379}} &nbsp;  {{ZBL|0992.60001}}
 
|-
 
|valign="top"|{{Ref|K}}|| Alexander  S.  Kechris, "Classical  descriptive set theory", Springer-Verlag  (1995). &nbsp;  {{MR|1321597}} &nbsp; {{ZBL|0819.04002}}
 
|-
 
|valign="top"|{{Ref|BK}}||  Howard Becker and Alexander S. Kechris, "The descriptive set theory of  Polish group actions", Cambridge (1996). &nbsp; {{MR|1425877}}  &nbsp;  {{ZBL|0949.54052}}
 
|-
 
|valign="top"|{{Ref|D}}||  Richard M. Dudley, "Real analysis and probability",  Wadsworth&Brooks/Cole (1989). &nbsp; {{MR|0982264}} &nbsp;  {{ZBL|0686.60001}}
 
|-
 
|valign="top"|{{Ref|M}}||  George  W.  Mackey,  "Borel structure in groups and their duals",  ''Trans.  Amer.  Math. Soc.''  '''85''' (1957), 134–165. &nbsp; {{MR|0089999}}  &nbsp; {{ZBL|0082.11201}}
 
|-
 
|valign="top"|{{Ref|H}}||  Paul R. Halmos, "Measure theory", v. Nostrand (1950). &nbsp;  {{MR|0033869}} &nbsp; {{ZBL|0040.16802}}
 
|-
 
|valign="top"|{{Ref|R}}||  Walter Rudin, "Principles of mathematical analysis", McGraw-Hill  (1953). &nbsp; {{MR|0055409}} &nbsp; {{ZBL|0052.05301}}
 
|}
 

Latest revision as of 07:12, 13 March 2016

[1]

Notes

  1. http://hea-www.harvard.edu/AstroStat; http://www.incagroup.org ; http://astrostatistics.psu.edu


A B C
X Y Z




$\newcommand*{\longhookrightarrow}{\lhook\joinrel\relbar\joinrel\rightarrow}$

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=21118