Namespaces
Variants
Actions

Difference between revisions of "User:Boris Tsirelson/sandbox1"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 1: Line 1:
<asy>
+
'''Bold text Genetic Algorithms'''
size(80,40,keepAspect=false);
 
pen p2=red+1.2;
 
draw(((-4,0){right}..(-3,0.004)..(-2,0.054)..(-1,0.242)..(0,0.399)..(1,0.242)..(2,0.054)..(3,0.004)..{right}(4,0)),p=p2);
 
defaultpen(linewidth(0.8));
 
draw((-4,0)--(4,0));
 
</asy>
 
  
--------------------------------------
 
  
if for every $\varepsilon$ there is a $\delta > 0$ such that,
 
for any $a_1<b_1<a_2<b_2<\ldots < a_n<b_n \in I$ with $\sum_i |a_i -b_i| <\delta$, we have
 
\[
 
\sum_i d (f (b_i), f(a_i)) <\varepsilon\, .
 
\]
 
The  absolute continuity guarantees the uniform continuity. As for real  valued functions, there is a characterization through an appropriate  notion of derivative.
 
  
'''Theorem 1'''
+
1.      Genetic algorithms (GAs): basic form
A continuous function $f$ is absolutely continuous if and only if there is a function $g\in L^1_{loc} (I, \mathbb R)$ such that
 
\begin{equation}\label{e:metric}
 
d (f(b), f(a))\leq \int_a^b g(t)\, dt \qquad \forall a&lt;b\in I\,
 
\end{equation}
 
(cp. with ). This theorem motivates the following
 
  
'''Definition 2'''
+
 
If  $f:I\to X$ is a absolutely continuous and $I$ is compact, the metric  derivative of $f$ is the function $g\in L^1$ with the smalles $L^1$ norm  such that \ref{e:metric} holds (cp. with )
+
A generic GA (also known as an evolutionary algorithm [EA]) assumes a discrete search space ''Italic text H'' and a function
>
+
                                                                                                                                  \[f:H\to\mathbb{R}\],
--------------------------------------------
+
where ''Italic text H'' is a subset of the Euclidean space ''Italic text R''.
 +
 
 +
 
 +
The general problem is to find
 +
                                                                                              \[\arg\underset{X\in H}{\mathop{\min }}\,f\]
 +
 
 +
where ''Italic text''X
 +
is a vector of the decision variables and ''Italic text'' f is the objective function.
 +
 
 +
With  GAs it is customary to distinguish genotype–the encoded representation  of the variables–from phenotype–the set of variables themselves. The  vector ''Italic text'' X  is represented by a string (or chromosome)  ''Italic text'' s of length ''Italic text'' l  madeup of symbols drawn  from an alphabet ''Italic text'' A using the mapping
 +
 
 +
                                                                                            \[c:{{A}^{l}}\to H\]
 +
 
 +
The  mapping ''Italic text'' c is not necessarily surjective. The range of  ''Italic text'' c determine the subset of ''Italic  text''<sup>Superscript text</sup> Al available for  exploration by a GA.  The range of ''Italic text'' c, ''Italic text'' Ξ 
 +
 
 +
                                                                                            \[\Xi\subseteq {{A}^{l}}\]
 +
 
 +
is  needed to account for the fact that some strings in the image ''Italic  text''<sup>Superscript text</sup> Al under ''Italic text'' c  may represent invalid solutions to the original problem.
 +
 
 +
The  string length ''Italic text'' l depends on the dimensions of both  ''Italic text'' H and ''Italic text''<sup>Superscript  text</sup> Al, with the elements of the string corresponding to  genes and the values to alleles. This statement of genes and alleles is  often referred to as genotype-phenotype mapping.
 +
 
 +
Given the statements above, the optimization becomes:
 +
 
 +
                                                                                    \[\arg\underset{S\in L}{\mathop{\min g}}\,\],
 +
given the function
 +
 
 +
                                                                                    \[g(s)=f(c(s))\].
 +
 
 +
Finally,  with GAs it is helpful if ''Italic text'' c is a bijection. The  important property of bijections as they apply to GAs is that bijections  have an inverse, i.e., there is a unique vector ''Italic text'' x for  every string and a unique string for each ''Italic text'' x.
 +
 
 +
 
 +
 
 +
2.      Genetic algorithms and their Operators
 +
 
 +
Let  H be a nonempty set (the individual or search  space)\[{{\left\{{{u}^{i}} \right\}}_{i\ in \mathbb{N}}}\] a sequence in  \[{{\mathbb{Z}}^{+}}\] (the parent populations).  \[{{\left\{  {{u}^{'(i)}} \right\}}_{i\in \mathbb{N}}}\] a sequence in  \[{{\mathbb{Z}}^{+}}\](the offspring population sizes), \[\phi:H\to  \mathbb{R}\]a fitness function, \[\iota :\cup  _{i=1}^{\infty}{{({{H}^{u}})}^{(i)}}\to\]{true,false} (the termination  criteria), \[\chi\in\]{true, false}, r a sequence \[\left\{{{r}^{(i)}}  \right\}\]
 +
 
 +
Define the collection ''Italic text''μ (the  number of individuals) via <sub>Subscript text</sub>''Italic  text''Hμ. The population transforms are denoted by
 +
 
 +
                                                                                \[T:{{H}^{\mu }}\to {{H}^{\mu }}\]
 +
 
 +
where  \[\mu \in \mathbb{N}\ of recombination operators τ(i) : \[X_{r}^{(i)}\  to T(\Omega _{r}^{(i)},T\left( {{H}^{{{u}^{(i)}}}},{{H}^{u{{'}^{(i)}}}}  \right))\], m a sequence of {m(i)} of mutation operators in mi,  \[X_{m}^{(i)}\to T(\Omega  _{m}^{(i)},T\left({{H}^{{{u}^{(i)}}}},{{H}^{u{{'}^{(i)}}}} \right))\], s  a sequence of {si} selection operators s(i):  \[X_{s}^{(i)}\timesT(H,\mathbb{R})\to T(\Omega  _{s}^{(i)},T(({{H}^{u{{'}^{(i)+\chi {{\mu}^{(i)}}}}}}),{{H}^{{{\mu  }^{(i+1)}}}}))\], \[\Theta _{r}^{(i)}\ in X_{r}^{(i)}\] (the  recombination parameters), \[\Theta _{m}^{(i)}\\in X_{m}^{(i)}\] (the  mutation parameters), and \[\Theta _{s}^{(i)}\ in X_{s}^{(i)}\] (the  selection parameters).
 +
 
 +
 
 +
To account for the cases where populations whose size not equal to their predecessors’, the following expression
 +
 
 +
                                                                                \[T:{{H}^{\mu}}\to {{H}^{{{\mu }'}}}\]
 +
 
 +
accommodates  populations that contain the same or different individuals. This  mapping has the ability to represent all population sizes, genetic  operators, and parameters as sequences.
 +
 
 +
 
 +
The  execution of a GA typically begins by random sampling with replacement  from <sup>Superscript text</sup>''Italic text''Al.  The  resulting collection is the initial population, denoted by ''Italic  text'' P(0). In general, a population is a collection  \[P=({{a}_{1}},{{a}_{2}},...,{{a}_{\mu }})\]of  individuals,where\[{{a}_{i}}\in {{A}^{l}}\],and populations are treated  as n-tuples of individuals. The number of individuals (''Italic text μ")  is defined as the population size.
 +
 
 +
Following upon the  work of Lamont and Merkle (Lamont, 1997) and others, the termination  criteria and the other genetic operators(GOs)will be defined in more  detail.
 +
 
 +
Since ''Italic text''H  is a nonempty  set,\[c:{{A}^{l}}\to H\], and \[f:H\to \mathbb{R}\], the fitness scaling  function can be defined as \[{{T}_{s}}:\mathbb{R}\to \mathbb{R}\]and a  related fitness function as\[\Phi \triangleq {{T}_{s}}\circ f\circ c\].  In this definition it is understood that the objective function ''Italic  text''f is determined by the application, while the specification of  the decoding function ''Italic text''c[1] and the fitness scaling  function <sup>Subscript text</sup>''Italic text''Ts are  design issues.
 +
 
 +
 
 +
After initialization, the  execution proceeds iteratively.  Each iteration consists of an  application of one or more GOs. The combined effect of the GOs applied  in a particular generation $t\in N$ is a transformation of the current  population ''Italic text''P(t) into a new population ''Italic  text''P(t+1).
 +
 
 +
In the population transformation $\mu  ,{\mu}'\ in {{\mathbb{Z}}^{+}}$(the parent and offspring population  sizes, respectively). A mapping $T:{{H}^{\mu }}\ to {{H}^{{{\mu }'}}}$  is called a population transformation (''Italic text''PT). If  $T(P)={P}'$, then ''Italic text''P is the parent population and  <sup>Superscript text</sup>''Italic text''P/ the offspring  population. If $\mu ={\mu }'$,then it is called the population size.
 +
 
 +
The  ''Italic text''PT resulting from a GO often depends on the outcome of a  random experiment. This result is referred to as a random population  transformation (''Italic text''RPT or random PT). To define ''Italic  text''RPT, let $\mu \in {{\mathbb{Z}}^{+}}$and $\Omega $ be a set (the  sample space). A random function $R:\Omega \to T({{H}{\mu  }},\bigcup\limits_{{\mu }'\ in {{\mathbb{Z}}^{+}}}^{{}}{{{H}^{{{\mu  }'}}}})$ is called a ''Italic text''RPT. The distribution of ''Italic  text''PTs resulting from the application of a GO depends on the operator  parameters; in other words, a GO maps its parameters to a ''Italic  text''RPT.
 +
 
 +
Now that both the fitness function and  ''Italic text''RPT have been defined, let$\mu \in {{\mathbb{Z}}^{+}}$,  ''Italic text''X be a set (the parameter space) and $\Omega $ a set. The  mapping $\Zeta :X\to T\left( \Omega ,T\left[ {{H}^{\mu  }},\bigcup\limits_{{\mu }'\in {{\mathbb{Z}}^{+}}}^{{}}{{{H}^{{{\mu}'}}}}  \right] \right)$ is a GO. The set of GOs is denoted as $GAOP\left(  H,\mu ,X,\Omega  \right)$.
 +
 
 +
 
 +
There are three  common GOs: recombination,mutation, and selection. These three operators  are roughly analogous to their similarly named counterparts in  genetics. The application of them in GAs is strictly Darwin-like in  nature, i.e., “survival of the fittest.”
 +
 
 +
For the recombination operator let $r\in GAOP\left( H,\mu ,X,\Omega  \right)$.  If there exists $P\in {{H}^{\mu }},\Theta \in X$, and $\omega \in \Omega  $, such that one individual in the offspring population ${{r}_{\Theta  }}\left( P \right)$ depends on more than one individual of P,then r is  referred to as a recombination operator.
 +
 
 +
For the  mutation operator let $m\in GAOP\left( H,\mu ,X,\Omega\right)$. If for  every $P\in {{H}^{\mu }}$, for every $\Theta \in X$, for every  $\omega\in \Omega $, and if each individual in the offspring population  ${{m}_{\Theta}}\left( P \right)$ depends on at most one individual of P,  then m is called a mutation operator.
 +
 
 +
Finally, for  the selection operator let $s\in EVOP\left( H,\mu ,X\times  T\left(H,\mathbb{R}),\Omega  \right) \right)$. If $P\in {{H}^{\mu  }}$,$\Theta \in X$,$\Phi :H\to\mathbb{R}$in all cases, and satisfies  $a\in {{s}_{\left( \Theta ,\Phi \right)}}(P)\Rightarrow a\in P$, then s  is a selection operator.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
'''Bold text'''Endnotes
 +
 
 +
[1]  If the domain of c is total, i.e., the domain of c is all of A I, c is  called a decoding function. The mapping of c is not necessarily  surjective. The range of c determines the subset of Al available for  exploration by the evolutionary algorithm.

Revision as of 20:10, 20 August 2012

Bold text Genetic Algorithms


1. Genetic algorithms (GAs): basic form


A generic GA (also known as an evolutionary algorithm [EA]) assumes a discrete search space Italic text H and a function

                                                                                                                                 \[f:H\to\mathbb{R}\],

where Italic text H is a subset of the Euclidean space Italic text R.


The general problem is to find

                                                                                             \[\arg\underset{X\in H}{\mathop{\min }}\,f\]

where Italic textX

is a vector of the decision variables and Italic text f is the objective function.

With GAs it is customary to distinguish genotype–the encoded representation of the variables–from phenotype–the set of variables themselves. The vector Italic text X is represented by a string (or chromosome) Italic text s of length Italic text l madeup of symbols drawn from an alphabet Italic text A using the mapping

                                                                                            \[c:{{A}^{l}}\to H\]

The mapping Italic text c is not necessarily surjective. The range of Italic text c determine the subset of Italic textSuperscript text Al available for exploration by a GA. The range of Italic text c, Italic text Ξ

                                                                                            \[\Xi\subseteq {{A}^{l}}\]

is needed to account for the fact that some strings in the image Italic textSuperscript text Al under Italic text c may represent invalid solutions to the original problem.

The string length Italic text l depends on the dimensions of both Italic text H and Italic textSuperscript text Al, with the elements of the string corresponding to genes and the values to alleles. This statement of genes and alleles is often referred to as genotype-phenotype mapping.

Given the statements above, the optimization becomes:

                                                                                    \[\arg\underset{S\in L}{\mathop{\min g}}\,\],

given the function

                                                                                    \[g(s)=f(c(s))\].

Finally, with GAs it is helpful if Italic text c is a bijection. The important property of bijections as they apply to GAs is that bijections have an inverse, i.e., there is a unique vector Italic text x for every string and a unique string for each Italic text x.


2. Genetic algorithms and their Operators

Let H be a nonempty set (the individual or search space)\[{{\left\{{{u}^{i}} \right\}}_{i\ in \mathbb{N}}}\] a sequence in \[{{\mathbb{Z}}^{+}}\] (the parent populations). \[{{\left\{ {{u}^{'(i)}} \right\}}_{i\in \mathbb{N}}}\] a sequence in \[{{\mathbb{Z}}^{+}}\](the offspring population sizes), \[\phi:H\to \mathbb{R}\]a fitness function, \[\iota :\cup _{i=1}^{\infty}{{({{H}^{u}})}^{(i)}}\to\]{true,false} (the termination criteria), \[\chi\in\]{true, false}, r a sequence \[\left\{{{r}^{(i)}} \right\}\]

Define the collection Italic textμ (the number of individuals) via Subscript textItalic textHμ. The population transforms are denoted by

                                                                                \[T:{{H}^{\mu }}\to {{H}^{\mu }}\]

where \[\mu \in \mathbb{N}\ of recombination operators τ(i) : \[X_{r}^{(i)}\ to T(\Omega _{r}^{(i)},T\left( {{H}^{{{u}^{(i)}}}},{{H}^{u{{'}^{(i)}}}} \right))\], m a sequence of {m(i)} of mutation operators in mi, \[X_{m}^{(i)}\to T(\Omega _{m}^{(i)},T\left({{H}^{{{u}^{(i)}}}},{{H}^{u{{'}^{(i)}}}} \right))\], s a sequence of {si} selection operators s(i): \[X_{s}^{(i)}\timesT(H,\mathbb{R})\to T(\Omega _{s}^{(i)},T(({{H}^{u{{'}^{(i)+\chi {{\mu}^{(i)}}}}}}),{{H}^{{{\mu }^{(i+1)}}}}))\], \[\Theta _{r}^{(i)}\ in X_{r}^{(i)}\] (the recombination parameters), \[\Theta _{m}^{(i)}\\in X_{m}^{(i)}\] (the mutation parameters), and \[\Theta _{s}^{(i)}\ in X_{s}^{(i)}\] (the selection parameters).


To account for the cases where populations whose size not equal to their predecessors’, the following expression

                                                                                \[T:{{H}^{\mu}}\to {{H}^{{{\mu }'}}}\]

accommodates populations that contain the same or different individuals. This mapping has the ability to represent all population sizes, genetic operators, and parameters as sequences.


The execution of a GA typically begins by random sampling with replacement from Superscript textItalic textAl. The resulting collection is the initial population, denoted by Italic text P(0). In general, a population is a collection \[P=({{a}_{1}},{{a}_{2}},...,{{a}_{\mu }})\]of individuals,where\[{{a}_{i}}\in {{A}^{l}}\],and populations are treated as n-tuples of individuals. The number of individuals (Italic text μ") is defined as the population size.

Following upon the work of Lamont and Merkle (Lamont, 1997) and others, the termination criteria and the other genetic operators(GOs)will be defined in more detail.

Since Italic textH is a nonempty set,\[c:{{A}^{l}}\to H\], and \[f:H\to \mathbb{R}\], the fitness scaling function can be defined as \[{{T}_{s}}:\mathbb{R}\to \mathbb{R}\]and a related fitness function as\[\Phi \triangleq {{T}_{s}}\circ f\circ c\]. In this definition it is understood that the objective function Italic textf is determined by the application, while the specification of the decoding function Italic textc[1] and the fitness scaling function Subscript textItalic textTs are design issues.


After initialization, the execution proceeds iteratively. Each iteration consists of an application of one or more GOs. The combined effect of the GOs applied in a particular generation $t\in N$ is a transformation of the current population Italic textP(t) into a new population Italic textP(t+1).

In the population transformation $\mu ,{\mu}'\ in {{\mathbb{Z}}^{+}}$(the parent and offspring population sizes, respectively). A mapping $T:{{H}^{\mu }}\ to {{H}^{{{\mu }'}}}$ is called a population transformation (Italic textPT). If $T(P)={P}'$, then Italic textP is the parent population and Superscript textItalic textP/ the offspring population. If $\mu ={\mu }'$,then it is called the population size.

The Italic textPT resulting from a GO often depends on the outcome of a random experiment. This result is referred to as a random population transformation (Italic textRPT or random PT). To define Italic textRPT, let $\mu \in {{\mathbb{Z}}^{+}}$and $\Omega $ be a set (the sample space). A random function $R:\Omega \to T({{H}{\mu }},\bigcup\limits_{{\mu }'\ in {{\mathbb{Z}}^{+}}}^{{}}{{{H}^{{{\mu }'}}}})$ is called a Italic textRPT. The distribution of Italic textPTs resulting from the application of a GO depends on the operator parameters; in other words, a GO maps its parameters to a Italic textRPT.

Now that both the fitness function and Italic textRPT have been defined, let$\mu \in {{\mathbb{Z}}^{+}}$, Italic textX be a set (the parameter space) and $\Omega $ a set. The mapping $\Zeta :X\to T\left( \Omega ,T\left[ {{H}^{\mu }},\bigcup\limits_{{\mu }'\in {{\mathbb{Z}}^{+}}}^{{}}{{{H}^{{{\mu}'}}}} \right] \right)$ is a GO. The set of GOs is denoted as $GAOP\left( H,\mu ,X,\Omega \right)$.


There are three common GOs: recombination,mutation, and selection. These three operators are roughly analogous to their similarly named counterparts in genetics. The application of them in GAs is strictly Darwin-like in nature, i.e., “survival of the fittest.”

For the recombination operator let $r\in GAOP\left( H,\mu ,X,\Omega \right)$. If there exists $P\in {{H}^{\mu }},\Theta \in X$, and $\omega \in \Omega $, such that one individual in the offspring population ${{r}_{\Theta }}\left( P \right)$ depends on more than one individual of P,then r is referred to as a recombination operator.

For the mutation operator let $m\in GAOP\left( H,\mu ,X,\Omega\right)$. If for every $P\in {{H}^{\mu }}$, for every $\Theta \in X$, for every $\omega\in \Omega $, and if each individual in the offspring population ${{m}_{\Theta}}\left( P \right)$ depends on at most one individual of P, then m is called a mutation operator.

Finally, for the selection operator let $s\in EVOP\left( H,\mu ,X\times T\left(H,\mathbb{R}),\Omega \right) \right)$. If $P\in {{H}^{\mu }}$,$\Theta \in X$,$\Phi :H\to\mathbb{R}$in all cases, and satisfies $a\in {{s}_{\left( \Theta ,\Phi \right)}}(P)\Rightarrow a\in P$, then s is a selection operator.




Bold textEndnotes

[1] If the domain of c is total, i.e., the domain of c is all of A I, c is called a decoding function. The mapping of c is not necessarily surjective. The range of c determines the subset of Al available for exploration by the evolutionary algorithm.

How to Cite This Entry:
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=27481