Namespaces
Variants
Actions

Difference between revisions of "Upper-and-lower-functions method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
u0958201.png
 +
$#A+1 = 46 n = 1
 +
$#C+1 = 46 : ~/encyclopedia/old_files/data/U095/U.0905820 Upper\AAhand\AAhlower\AAhfunctions method
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A method for demonstrating the existence of solutions of boundary value problems for differential equations. The idea of this method applied to ordinary differential equations was discussed in the work of G. Peano (1880). For the case of the [[Dirichlet problem|Dirichlet problem]] and for the case of the [[Laplace equation|Laplace equation]] the idea occurs in H. Poincaré's [[Balayage method|balayage method]]. O. Perron [[#References|[1]]] was the first to give a full exposition of the method of upper and lower functions for this last case.
 
A method for demonstrating the existence of solutions of boundary value problems for differential equations. The idea of this method applied to ordinary differential equations was discussed in the work of G. Peano (1880). For the case of the [[Dirichlet problem|Dirichlet problem]] and for the case of the [[Laplace equation|Laplace equation]] the idea occurs in H. Poincaré's [[Balayage method|balayage method]]. O. Perron [[#References|[1]]] was the first to give a full exposition of the method of upper and lower functions for this last case.
  
Let the Dirichlet problem be posed in a region <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958201.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958202.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958203.png" />, for a linear, homogeneous, elliptic second-order equation with continuous coefficients,
+
Let the Dirichlet problem be posed in a region $  G $
 +
of the space $  \mathbf R  ^ {n} $,  
 +
$  n \geq  2 $,  
 +
for a linear, homogeneous, elliptic second-order equation with continuous coefficients,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958204.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
Lu  \equiv  \sum _ { i,j= } 1 ^ { n }
 +
a _ {ij}
 +
\frac{\partial  ^ {2} u }{\partial  x _ {i} \partial  x _ {j} }
 +
+
 +
\sum _ { i= } 1 ^ { n }
 +
b _ {i}
 +
\frac{\partial  u }{\partial  x _ {i} }
 +
+
 +
cu  = 0,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958205.png" /></td> </tr></table>
+
$$
 +
c  \leq  0,\  x  \in  G,
 +
$$
  
 
with the boundary condition
 
with the boundary condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958206.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
u ( x)  = f ( x),\  x \in \partial  G.
 +
$$
  
In the method of upper and lower functions one introduces a generalization of superharmonic functions (respectively, of subharmonic functions), under the assumption that the problems (1) and (2) are locally solvable. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958207.png" /> which is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958208.png" /> is said to be a generalized superharmonic function (respectively, a generalized subharmonic function) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u0958209.png" /> if for any sufficiently small ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582011.png" />, the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582012.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582013.png" />) is true. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582014.png" /> is a continuous function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582015.png" /> which is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582016.png" /> outside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582017.png" /> and on its boundary and which satisfies equation (1) inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582018.png" />. For a continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582019.png" /> on the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582020.png" />, a generalized superharmonic (respectively, a subharmonic) function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582021.png" /> is said to be upper (respectively, lower) if for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582022.png" /> the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582023.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582024.png" />) is true.
+
In the method of upper and lower functions one introduces a generalization of superharmonic functions (respectively, of subharmonic functions), under the assumption that the problems (1) and (2) are locally solvable. A function $  v $
 +
which is continuous in $  G $
 +
is said to be a generalized superharmonic function (respectively, a generalized subharmonic function) in $  G $
 +
if for any sufficiently small ball $  K $,  
 +
$  \overline{K}\; \subset  G $,  
 +
the inequality $  ( v) _ {K} \leq  v $(
 +
respectively, $  ( v) _ {K} \geq  v $)  
 +
is true. Here, $  ( v) _ {K} $
 +
is a continuous function in $  G $
 +
which is equal to $  v $
 +
outside $  K $
 +
and on its boundary and which satisfies equation (1) inside $  K $.  
 +
For a continuous function $  f $
 +
on the boundary $  \partial  G $,  
 +
a generalized superharmonic (respectively, a subharmonic) function $  v $
 +
is said to be upper (respectively, lower) if for $  x \in \partial  G $
 +
the inequality $  v( x) \geq  f( x) $(
 +
respectively, $  v( x) \leq  f( x) $)  
 +
is true.
  
The classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582026.png" /> of all upper and lower functions, respectively, are non-empty, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582028.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582029.png" /> [[#References|[3]]]. A generalized solution of the Dirichlet problem is defined as the smallest envelope of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582030.png" /> or as the largest envelope of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582031.png" />:
+
The classes $  \Phi ( G, f  ) $
 +
and $  \Psi ( G, f  ) $
 +
of all upper and lower functions, respectively, are non-empty, and if $  v \in \Phi ( G, f  ) $
 +
and $  w \in \Psi ( G, f  ) $,  
 +
then $  v \geq  w $[[#References|[3]]]. A generalized solution of the Dirichlet problem is defined as the smallest envelope of the class $  \Phi ( G, f  ) $
 +
or as the largest envelope of the class $  \Psi ( G, f  ) $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
u ( x)  = \inf \{ {v ( x) } : {v \in \Phi ( G, f  ) } \} =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582033.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sup \{ w ( x): w \in \Psi ( G, f  ) \} ,\  x \in G.
 +
$$
  
If the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582034.png" /> permits a [[Barrier|barrier]] at each one of its points, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582035.png" /> everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582036.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582037.png" /> is a classical solution of the Dirichlet problem. In the general case the behaviour of the generalized solution (3) of the elliptic equation (1) at boundary points fully parallels the behaviour of the generalized solution of the Laplace problem (cf. [[Perron method|Perron method]]).
+
If the boundary $  \partial  G $
 +
permits a [[Barrier|barrier]] at each one of its points, then $  u( x) = f( x) $
 +
everywhere on $  \partial  G $,  
 +
i.e. u $
 +
is a classical solution of the Dirichlet problem. In the general case the behaviour of the generalized solution (3) of the elliptic equation (1) at boundary points fully parallels the behaviour of the generalized solution of the Laplace problem (cf. [[Perron method|Perron method]]).
  
 
The method of upper and lower functions is also employed in the study of the first boundary value problem for linear homogeneous parabolic second-order equations of the form
 
The method of upper and lower functions is also employed in the study of the first boundary value problem for linear homogeneous parabolic second-order equations of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582038.png" /></td> </tr></table>
+
$$
 +
Lu -  
 +
\frac{\partial  u }{\partial  t }
 +
  = 0,\ \
 +
( x, t) \in G \times [ 0, T],
 +
$$
  
 
with the initial condition
 
with the initial condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582039.png" /></td> </tr></table>
+
$$
 +
u ( x, 0)  = f ( x, 0),\ \
 +
x \in G,
 +
$$
  
 
and boundary condition
 
and boundary condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582040.png" /></td> </tr></table>
+
$$
 +
u ( x, t)  = f ( x, t),\ \
 +
( x, t) \in \partial  G \times [ 0, T].
 +
$$
  
 
In this case superparabolic (subparabolic) functions, with properties analogous to those of generalized superharmonic (subharmonic) functions, are introduced [[#References|[4]]].
 
In this case superparabolic (subparabolic) functions, with properties analogous to those of generalized superharmonic (subharmonic) functions, are introduced [[#References|[4]]].
Line 37: Line 109:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  O. Perron,  "Eine neue Behandlung der ersten Randwertaufgabe für <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582041.png" />"  ''Math. Z.'' , '''18'''  (1923)  pp. 42–54</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.G. Petrovskii,  "Partial differential equations" , Saunders  (1967)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience  (1965)  (Translated from German)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''4''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  O. Perron,  "Eine neue Behandlung der ersten Randwertaufgabe für <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582041.png" />"  ''Math. Z.'' , '''18'''  (1923)  pp. 42–54</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.G. Petrovskii,  "Partial differential equations" , Saunders  (1967)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience  (1965)  (Translated from German)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''4''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In axiomatic potential theory, this method is usually called the Perron–Wiener–Brelot method. In its general form, this method defines the upper solution of the Dirichlet problem, for any open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582042.png" /> satisfying the minimum principle and any numerical boundary function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582043.png" />, as the greatest lower bound of all upper functions: the lower-bounded hyperharmonic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582044.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582045.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582046.png" /> on the boundary and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095820/u09582047.png" /> outside some compact set. The lower solution is defined in a dual way. The Dirichlet problem admits a generalized solution if the upper and lower solutions are equal and harmonic (i.e. satisfy the differential equation). In this case, the boundary function is said to be resolutive. See [[#References|[a1]]].
+
In axiomatic potential theory, this method is usually called the Perron–Wiener–Brelot method. In its general form, this method defines the upper solution of the Dirichlet problem, for any open set $  \Omega $
 +
satisfying the minimum principle and any numerical boundary function $  f $,  
 +
as the greatest lower bound of all upper functions: the lower-bounded hyperharmonic functions u $
 +
on $  \Omega $
 +
such that $  \lim\limits  \inf  u \geq  f $
 +
on the boundary and $  u \geq  0 $
 +
outside some compact set. The lower solution is defined in a dual way. The Dirichlet problem admits a generalized solution if the upper and lower solutions are equal and harmonic (i.e. satisfy the differential equation). In this case, the boundary function is said to be resolutive. See [[#References|[a1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Constantinescu,  A. Cornea,  "Potential theory on harmonic spaces" , Springer  (1972)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Constantinescu,  A. Cornea,  "Potential theory on harmonic spaces" , Springer  (1972)</TD></TR></table>

Revision as of 08:27, 6 June 2020


A method for demonstrating the existence of solutions of boundary value problems for differential equations. The idea of this method applied to ordinary differential equations was discussed in the work of G. Peano (1880). For the case of the Dirichlet problem and for the case of the Laplace equation the idea occurs in H. Poincaré's balayage method. O. Perron [1] was the first to give a full exposition of the method of upper and lower functions for this last case.

Let the Dirichlet problem be posed in a region $ G $ of the space $ \mathbf R ^ {n} $, $ n \geq 2 $, for a linear, homogeneous, elliptic second-order equation with continuous coefficients,

$$ \tag{1 } Lu \equiv \sum _ { i,j= } 1 ^ { n } a _ {ij} \frac{\partial ^ {2} u }{\partial x _ {i} \partial x _ {j} } + \sum _ { i= } 1 ^ { n } b _ {i} \frac{\partial u }{\partial x _ {i} } + cu = 0, $$

$$ c \leq 0,\ x \in G, $$

with the boundary condition

$$ \tag{2 } u ( x) = f ( x),\ x \in \partial G. $$

In the method of upper and lower functions one introduces a generalization of superharmonic functions (respectively, of subharmonic functions), under the assumption that the problems (1) and (2) are locally solvable. A function $ v $ which is continuous in $ G $ is said to be a generalized superharmonic function (respectively, a generalized subharmonic function) in $ G $ if for any sufficiently small ball $ K $, $ \overline{K}\; \subset G $, the inequality $ ( v) _ {K} \leq v $( respectively, $ ( v) _ {K} \geq v $) is true. Here, $ ( v) _ {K} $ is a continuous function in $ G $ which is equal to $ v $ outside $ K $ and on its boundary and which satisfies equation (1) inside $ K $. For a continuous function $ f $ on the boundary $ \partial G $, a generalized superharmonic (respectively, a subharmonic) function $ v $ is said to be upper (respectively, lower) if for $ x \in \partial G $ the inequality $ v( x) \geq f( x) $( respectively, $ v( x) \leq f( x) $) is true.

The classes $ \Phi ( G, f ) $ and $ \Psi ( G, f ) $ of all upper and lower functions, respectively, are non-empty, and if $ v \in \Phi ( G, f ) $ and $ w \in \Psi ( G, f ) $, then $ v \geq w $[3]. A generalized solution of the Dirichlet problem is defined as the smallest envelope of the class $ \Phi ( G, f ) $ or as the largest envelope of the class $ \Psi ( G, f ) $:

$$ \tag{3 } u ( x) = \inf \{ {v ( x) } : {v \in \Phi ( G, f ) } \} = $$

$$ = \ \sup \{ w ( x): w \in \Psi ( G, f ) \} ,\ x \in G. $$

If the boundary $ \partial G $ permits a barrier at each one of its points, then $ u( x) = f( x) $ everywhere on $ \partial G $, i.e. $ u $ is a classical solution of the Dirichlet problem. In the general case the behaviour of the generalized solution (3) of the elliptic equation (1) at boundary points fully parallels the behaviour of the generalized solution of the Laplace problem (cf. Perron method).

The method of upper and lower functions is also employed in the study of the first boundary value problem for linear homogeneous parabolic second-order equations of the form

$$ Lu - \frac{\partial u }{\partial t } = 0,\ \ ( x, t) \in G \times [ 0, T], $$

with the initial condition

$$ u ( x, 0) = f ( x, 0),\ \ x \in G, $$

and boundary condition

$$ u ( x, t) = f ( x, t),\ \ ( x, t) \in \partial G \times [ 0, T]. $$

In this case superparabolic (subparabolic) functions, with properties analogous to those of generalized superharmonic (subharmonic) functions, are introduced [4].

References

[1] O. Perron, "Eine neue Behandlung der ersten Randwertaufgabe für " Math. Z. , 18 (1923) pp. 42–54
[2] I.G. Petrovskii, "Partial differential equations" , Saunders (1967) (Translated from Russian)
[3] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German)
[4] V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) (Translated from Russian)

Comments

In axiomatic potential theory, this method is usually called the Perron–Wiener–Brelot method. In its general form, this method defines the upper solution of the Dirichlet problem, for any open set $ \Omega $ satisfying the minimum principle and any numerical boundary function $ f $, as the greatest lower bound of all upper functions: the lower-bounded hyperharmonic functions $ u $ on $ \Omega $ such that $ \lim\limits \inf u \geq f $ on the boundary and $ u \geq 0 $ outside some compact set. The lower solution is defined in a dual way. The Dirichlet problem admits a generalized solution if the upper and lower solutions are equal and harmonic (i.e. satisfy the differential equation). In this case, the boundary function is said to be resolutive. See [a1].

References

[a1] C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972)
How to Cite This Entry:
Upper-and-lower-functions method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Upper-and-lower-functions_method&oldid=17894
This article was adapted from an original article by L.I. KamyninE.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article