Namespaces
Variants
Actions

Universal behaviour in dynamical systems

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


In the late 1970's, P. Coullet and C. Tresser [a6] and M. Feigenbaum

independently found striking, unexpected features of the transition from simple to chaotic dynamics in one-dimensional dynamical systems (cf. also Routes to chaos). By the example of the family of quadratic mappings $ f _ \mu ( x)= 1- \mu x ^ {2} $ acting (for $ 0 \leq \mu \leq 2 $) on the interval $ x \in [- 1, 1] $, the period-doubling scenario is recalled here. For $ \mu = 2 $, $ f _ \mu $ has periodic points of every (least) period. Let $ \mu _ {i } $ be the infimum of parameter values $ \mu $ for which $ f _ \mu $ has a periodic orbit of least period $ 2 ^ {i } $. Then

$$ 0 < \mu _ {0} < \mu _ {1} < \dots , $$

and

$$ \sup \mu _ {i } = \mu _ \infty \sim 1.401155 \dots . $$

For $ \mu _ {i } < \mu \leq \mu _ {i+ 1 } $, the dynamics of $ f _ \mu $ is described by statements i)–iii) below.

i) $ f _ \mu $ has precisely one periodic orbit $ \Lambda _ {j} $ of (least) period $ 2 ^ {j} $ for each $ j= 0 \dots i $, and no other periodic orbits;

ii) any pair of adjacent points in $ \Lambda _ {i } $ is separated by a unique point in $ \cap _ {j< i } \Lambda _ {j} $;

iii) with the exception of the (countably many) orbits which land on some $ \Lambda _ {j} $, $ j< i $, and stay there, every $ f _ \mu $- orbit tends asymptotically to $ \Lambda _ {i } $.

For $ \mu = \mu _ \infty $( when $ f _ \mu $ is sometimes called the Feigenbaum mapping), statement i) holds, but with $ j $ ranging over all non-negative integers, and ii) holds for each $ i= 0, 1,\dots $; furthermore, the following analogue of iii) holds:

iv) (for $ \mu = \mu _ \infty $) the closure of the orbit of the turning point $ 0 $ is a Cantor set $ \Lambda _ \infty $, which is the asymptotic limit of every orbit not landing on one of the periodic orbits $ \Lambda _ {i } $, $ i= 0, 1,\dots $. The restricted mapping $ f _ \mu \mid _ {\Lambda _ \infty } $ is a minimal homeomorphism (the "adding machine for chaos in a dynamical systemadding machine" ).

Finally, $ \mu = \mu _ \infty $ is the threshold of "chaos" , in the following sense:

v) for $ \mu > \mu _ \infty $, $ f _ \mu $ has infinitely many distinct periodic orbits, and positive topological entropy.

Many features of this "topological" , or combinatorial picture were understood by early researchers in this area, specifically P.J. Myrberg [a12] and N. Metropolis, M.L. Stein and P.R. Stein [a13]. They recognized as well that the combinatorial structure of the periodic orbits $ \Lambda _ {j} $ is rigidly determined by the fact that $ f _ \mu $ is unimodal (cf. [a14]). In essence, the statements above can be formulated for any family of unimodal mappings (cf. ). In fact, the (weak) monotonicity of the $ \mu _ {i } $' s, together with the fact that if $ \mu < \mu _ \infty $, then $ f _ \mu $ must have periodic orbits of least period $ 2 ^ {j} $ for $ j= 0 \dots i $( some $ i $) and no others, follows for any family of continuous mappings on the line from Sharkovskii's theorem [a16], [a2]; recent work has yielded a more general understanding of the combinatorial structure of periodic orbits for continuous mappings in dimension $ 1 $( cf. [a1]).

Coullet, Tresser and Feigenbaum added to the topological picture described above a number of analytic and geometric features:

vi) the convergence $ \mu _ {i } \uparrow \mu _ \infty $ is asymptotically geometric:

$$ \lim\limits _ {i \rightarrow \infty } \ \frac{\mu _ \infty - \mu _ {i } }{\mu _ \infty - \mu _ {i+ 1 } } = \delta \sim 4.669 \dots ; $$

vii) the periodic orbits scale: let $ \Lambda _ {i } ^ {*} $ denote the orbit $ \Lambda _ {i } $ for $ \mu = \mu _ {i+ 1 } $; then

$$ \lim\limits _ {i \rightarrow \infty } \ \frac{ \mathop{\rm dist} ( 0, \Lambda _ {i } ^ {*} ) }{ \mathop{\rm dist} ( 0, \Lambda _ {i+ 1 } ^ {*} ) } = \alpha \sim \ 2.5029 \dots . $$

These statements, formulated for the particular family $ f _ \mu $ of quadratic mappings, are technically interesting, but not so striking. However, they observed that v)–vii) hold for a very broad class of unimodal one-parameter families, subject only to trivial "fullness" conditions (essentially that $ f _ {0} $ has only finitely many periodic orbits while $ f _ {2} $ has positive entropy) and smoothness (essentially that $ ( x, \mu ) \rightarrow f _ \mu ( x) $ is $ C ^ {2} $ and each $ f _ \mu $ has a non-degenerate critical point). And, sensationally, the constants $ \delta $ and $ \alpha $ are independent of the family $ f _ \mu $.

In [a6] and

these assertions were reduced, using ideas from renormalization theory, to certain technical conjectures concerning a doubling operator $ {\mathcal R} $ acting on an appropriate function space. O. Lanford

(cf. also [a3], [a5]) gave a rigorous, computer-assisted proof of the basic conjecture, that $ {\mathcal R} $ has a saddle-type fixed point with one characteristic multiplier $ \delta \sim 4.669 \dots $( the same as in vi)) and stable manifold of codimension $ 1 $. D. Sullivan [a17] showed the uniqueness of this fixed point in the space of "quadratic-like" mappings. The final conjecture, concerning transversality of the stable manifold with certain bifurcation submanifolds, remains unproved. Recently, Sullivan , introducing a number of new ideas, has circumvented this difficulty and provided a rather complete theory of universal features for families of $ C ^ {2} $ unimodal mappings. In particular, the asymptotic geometry of the Cantor set $ \Lambda _ \infty $( for $ \mu = \mu _ \infty $) and of analogous sets appearing at other "threshold" parameter values (the "infinitely renormalizable mappings of bounded type" ) is universal; for example, the set $ \Lambda _ \infty $ always has Hausdorff dimension $ 0.538045 $. Full expositions of this theory are provided in [a18] and [a7].

These ideas have been applied as well to circle diffeomorphisms [a10],

and area-preserving planar diffeomorphisms [a4], .

References

[a1] Ll. Alsedà, J. Llibre, M. Misiurewicz, "Combinatorial dynamics and entropy in one dimension" (to appear)
[a2] L. Block, J. Guckenheimer, M. Misiurewicz, L.-S. Young, "Periodic points and topological entropy of one dimensional maps" Z. Nitecki (ed.) C. Robinson (ed.) , Global theory of dynamical systems (Proc. Northwestern Univ., 1979) , Lect. notes in math. , 819 , Springer (1980) pp. 18–34 MR0591173 Zbl 0447.58028
[a3] M. Campanino, H. Epstein, D. Ruelle, "On the existence of Feigenbaum's fixed point" Comm. Math. Phys. , 79 (1981) pp. 261–302 MR612250
[a4] P. Collet, J.-P. Eckmann, H. Koch, "On universality for area-preserving maps of the plane" Physica , 3D (1981) pp. 457–467 MR0631180 Zbl 1194.37050
[a5] P. Collet, J.-P. Eckmann, O. Lanford, "Universal properties of maps on an interval" Comm. Math. Phys. , 76 (1980) pp. 211–254 MR0588048 Zbl 0455.58024
[a6] P. Coullet, C. Tresser, "Itérations d'endomorphismes et groupe de rénormalisation" J. Phys. , C5 (1978) pp. 25–28 MR0512110
[a7] W. de Mello, S. van Strien, "One-dimensional dynamics" (to appear)
[a8a] M. Feigenbaum, "Quantitative universality for a class of non-linear transformations" J. Stat. Phys. , 19 (1978) pp. 25–52 MR501179
[a8b] M. Feigenbaum, "The universal metric properties of a non-linear transformation" J. Stat. Phys. , 21 (1979) pp. 669–706 MR555919
[a9a] L. Jonker, D. Rand, "Bifurcations in one dimension" Invent. Math. , 62 (1981) pp. 347–365 MR0608525 MR0604832 Zbl 0475.58015
[a9b] L. Jonker, D. Rand, "Bifurcations in one dimension" Invent. Math. , 63 (1981) pp. 1–16 MR0608525 MR0604832 Zbl 0475.58015
[a10] L. Jonker, D. Rand, "Universal properties of maps of the circle with -singularities" Comm. Math. Phys. , 90 (1983) pp. 273–292 MR714439
[a11a] O. Lanford, "A computer-assisted proof of the Feigenbaum conjectures" Bull. Amer. Math. Soc. , 6 (1982) pp. 427–434 MR0648529 Zbl 0487.58017
[a11b] O.E. Lanford, "Computer assisted proofs in analysis" A.M. Gleason (ed.) , Proc. Internat. Congress Mathematicians (Berkeley, 1986) , Amer. Math. Soc. (1987) pp. 1385–1394 MR0934342 Zbl 0676.65039
[a12] P.J. Myrberg, "Sur l'iteration des polynomes réels quadratiques" J. Math. Pures Appl. , 41 (1962) pp. 339–351 MR0161968 Zbl 0106.04703
[a13] N. Metropolis, M.L. Stein, P.R. Stein, "On finite limit sets for transformations on the unit interval" J. Comb. Theory , 15A (1973) pp. 25–44 MR0316636 Zbl 0259.26003
[a14] W. Thurston, "On iterated maps of the interval" J.C. Alexander (ed.) , Dynamical Systems (Proc. Maryland, 1986–7) , Lect. notes in math. , 1342 , Springer (1988) pp. 465–563 MR0970571 Zbl 0664.58015
[a15a] D. Rand, "Universality and renormalization in dynamical systems" T. Bedford (ed.) J. W. Swift (ed.) , New directions in dynamical systems , Cambridge Univ. Press (1987) pp. 1–56
[a15b] D. Rand, "Global phase space universality, smooth conjugacies and renormalisation: the case." Nonlinearity , 1 (1988) pp. 181–202 MR928952
[a16] A.N. Sharkovskii, "Coexistence of cycles of a continuous map of the line into itself" Ukrain. Mat. Zh. , 16 (1964) pp. 61–71 (In Russian) MR1415876 MR1361914
[a17] D. Sullivan, "Quasiconformal homeomorphisms in dynamics, topology and geometry" A.M. Gleason (ed.) , Proc. Internat. Congress Mathematicians (Berkeley, 1986) , Amer. Math. Soc. (1987) pp. 1216–1228 MR0934326 Zbl 0698.58030
[a18] D. Sullivan, "Bounds, quadratic differentials, and renormalization conjectures" , Centennial Publ. , 2 , Amer. Math. Soc. (1991) MR1184622 Zbl 0936.37016
How to Cite This Entry:
Universal behaviour in dynamical systems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_behaviour_in_dynamical_systems&oldid=49089
This article was adapted from an original article by Z. Nitecki (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article