Namespaces
Variants
Actions

Difference between revisions of "Uniform boundedness"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''from above (below)''
+
<!--
 +
u0952101.png
 +
$#A+1 = 51 n = 0
 +
$#C+1 = 51 : ~/encyclopedia/old_files/data/U095/U.0905210 Uniform boundedness
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A property of a family of real-valued functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952101.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952103.png" /> is an index set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952104.png" /> is an arbitrary set. It requires that there is a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952105.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952106.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952107.png" /> the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952108.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u0952109.png" />) holds.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A family of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521011.png" />, is called uniformly bounded if it is uniformly bounded both from above and from below.
+
''from above (below)''
  
The notion of uniform boundedness of a family of functions has been generalized to mappings into normed and semi-normed spaces: A family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521014.png" /> is an arbitrary set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521015.png" /> is a semi-normed (normed) space with semi-norm (norm) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521016.png" />, is called uniformly bounded if there is a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521017.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521019.png" /> the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521020.png" /> holds. If a semi-norm (norm) is introduced into the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521021.png" /> of bounded mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521022.png" /> by the formula
+
A property of a family of real-valued functions $  f _  \alpha  : X \rightarrow \mathbf R $,  
 +
where $  \alpha \in {\mathcal A} $,  
 +
$  {\mathcal A} $
 +
is an index set and $  X $
 +
is an arbitrary set. It requires that there is a constant $  c > 0 $
 +
such that for all $  \alpha \in {\mathcal A} $
 +
and all  $  x \in X $
 +
the inequality $  f _  \alpha  ( x) \leq  c $(
 +
respectively,  $  f _  \alpha  ( x) \geq  - c $)  
 +
holds.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521023.png" /></td> </tr></table>
+
A family of functions  $  f _  \alpha  : X \rightarrow \mathbf R $,
 +
$  \alpha \in {\mathcal A} $,
 +
is called uniformly bounded if it is uniformly bounded both from above and from below.
  
then uniform boundedness of a set of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521025.png" />, means boundedness of this set in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521026.png" /> with the semi-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521027.png" />.
+
The notion of uniform boundedness of a family of functions has been generalized to mappings into normed and semi-normed spaces: A family of mappings  $  f _  \alpha  : X \rightarrow Y $,  
 +
where  $  \alpha \in {\mathcal A} $,  
 +
$  X $
 +
is an arbitrary set and  $  Y $
 +
is a semi-normed (normed) space with semi-norm (norm)  $  \| \cdot \| _ {Y} $,
 +
is called uniformly bounded if there is a constant  $  c > 0 $
 +
such that for all  $  \alpha \in {\mathcal A} $
 +
and  $  x \in X $
 +
the inequality  $  \| f _  \alpha  ( x) \| _ {Y} \leq  c $
 +
holds. If a semi-norm (norm) is introduced into the space  $  \{ X \rightarrow Y \} $
 +
of bounded mappings  $  f: X \rightarrow Y $
 +
by the formula
  
The concept of uniform boundedness from below and above has been generalized to the case of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521028.png" /> into a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521029.png" /> that is ordered in some sense.
+
$$
 +
\| f \| _ {\{ X \rightarrow Y \} }  = \sup _ {x \in X } \
 +
\| f ( x) \| _ {Y} ,
 +
$$
  
 +
then uniform boundedness of a set of functions  $  f _  \alpha  :  X \rightarrow Y $,
 +
$  \alpha \in U $,
 +
means boundedness of this set in the space  $  \{ X \rightarrow Y \} $
 +
with the semi-norm  $  \| \cdot \| _ {\{ X \rightarrow Y \} }  $.
  
 +
The concept of uniform boundedness from below and above has been generalized to the case of mappings  $  f:  X \rightarrow Y $
 +
into a set  $  Y $
 +
that is ordered in some sense.
  
 
====Comments====
 
====Comments====
The uniform boundedness theorem is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521030.png" /> be a linear topological space that is not a countable union of closed nowhere-dense subsets. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521031.png" /> be a family of continuous mappings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521032.png" /> into a quasi-normed linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521033.png" /> (cf. [[Quasi-norm|Quasi-norm]]). Assume that
+
The uniform boundedness theorem is as follows. Let $  X $
 +
be a linear topological space that is not a countable union of closed nowhere-dense subsets. Let $  \{ {T _  \alpha  } : {\alpha \in {\mathcal A} } \} $
 +
be a family of continuous mappings of $  X $
 +
into a quasi-normed linear space $  Y $(
 +
cf. [[Quasi-norm|Quasi-norm]]). Assume that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521034.png" /></td> </tr></table>
+
$$
 +
\| T _  \alpha  ( x+ y) \|  \leq  \| T _  \alpha  ( x) \| +
 +
\| T _  \alpha  ( y) \| ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521035.png" /></td> </tr></table>
+
$$
 +
\| T _  \alpha  ( ax) \|  = a  \| T _  \alpha  ( x) \| \  \textrm{ for }  a \geq  0.
 +
$$
  
Now, if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521036.png" /> is bounded for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521037.png" />, then
+
Now, if the set $  \{ {T _  \alpha  ( x) } : {\alpha \in {\mathcal A} } \} $
 +
is bounded for each $  x \in X $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521038.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {\alpha \rightarrow 0 }  T _  \alpha  ( x)  = 0
 +
$$
  
uniformly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521039.png" />. Here, the convergence to zero is strong convergence, i.e. in the quasi-norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521040.png" />.
+
uniformly in $  \alpha $.  
 +
Here, the convergence to zero is strong convergence, i.e. in the quasi-norm of $  Y $.
  
A corollary is the resonance theorem (sometimes itself called the uniform boundedness theorem): Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521041.png" /> be a family of bounded linear operators from a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521042.png" /> into a normed linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521043.png" />. Then the boundedness of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521044.png" /> for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521045.png" /> implies the boundedness of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521046.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521048.png" /> exists for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521049.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521050.png" /> is also a bounded linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095210/u09521051.png" />.
+
A corollary is the resonance theorem (sometimes itself called the uniform boundedness theorem): Let $  \{ {T _  \alpha  } : {\alpha \in {\mathcal A} } \} $
 +
be a family of bounded linear operators from a Banach space $  X $
 +
into a normed linear space $  Y $.  
 +
Then the boundedness of $  \{ {\| T _  \alpha  ( x) \| } : {\alpha \in {\mathcal A} } \} $
 +
for each $  x \in X $
 +
implies the boundedness of $  \{ {\| T _  \alpha  \| } : {\alpha \in {\mathcal A} } \} $,  
 +
and if $  {\mathcal A} = \mathbf N $
 +
and $  \lim\limits _ {n\rightarrow \infty }  T _ {n} ( x) = T( x) $
 +
exists for each $  x \in X $,  
 +
then $  T $
 +
is also a bounded linear operator $  X \rightarrow Y $.
  
 
Cf. also [[Banach–Steinhaus theorem|Banach–Steinhaus theorem]] (also called the uniform boundedness principle) and [[Equicontinuity|Equicontinuity]].
 
Cf. also [[Banach–Steinhaus theorem|Banach–Steinhaus theorem]] (also called the uniform boundedness principle) and [[Equicontinuity|Equicontinuity]].

Latest revision as of 08:27, 6 June 2020


from above (below)

A property of a family of real-valued functions $ f _ \alpha : X \rightarrow \mathbf R $, where $ \alpha \in {\mathcal A} $, $ {\mathcal A} $ is an index set and $ X $ is an arbitrary set. It requires that there is a constant $ c > 0 $ such that for all $ \alpha \in {\mathcal A} $ and all $ x \in X $ the inequality $ f _ \alpha ( x) \leq c $( respectively, $ f _ \alpha ( x) \geq - c $) holds.

A family of functions $ f _ \alpha : X \rightarrow \mathbf R $, $ \alpha \in {\mathcal A} $, is called uniformly bounded if it is uniformly bounded both from above and from below.

The notion of uniform boundedness of a family of functions has been generalized to mappings into normed and semi-normed spaces: A family of mappings $ f _ \alpha : X \rightarrow Y $, where $ \alpha \in {\mathcal A} $, $ X $ is an arbitrary set and $ Y $ is a semi-normed (normed) space with semi-norm (norm) $ \| \cdot \| _ {Y} $, is called uniformly bounded if there is a constant $ c > 0 $ such that for all $ \alpha \in {\mathcal A} $ and $ x \in X $ the inequality $ \| f _ \alpha ( x) \| _ {Y} \leq c $ holds. If a semi-norm (norm) is introduced into the space $ \{ X \rightarrow Y \} $ of bounded mappings $ f: X \rightarrow Y $ by the formula

$$ \| f \| _ {\{ X \rightarrow Y \} } = \sup _ {x \in X } \ \| f ( x) \| _ {Y} , $$

then uniform boundedness of a set of functions $ f _ \alpha : X \rightarrow Y $, $ \alpha \in U $, means boundedness of this set in the space $ \{ X \rightarrow Y \} $ with the semi-norm $ \| \cdot \| _ {\{ X \rightarrow Y \} } $.

The concept of uniform boundedness from below and above has been generalized to the case of mappings $ f: X \rightarrow Y $ into a set $ Y $ that is ordered in some sense.

Comments

The uniform boundedness theorem is as follows. Let $ X $ be a linear topological space that is not a countable union of closed nowhere-dense subsets. Let $ \{ {T _ \alpha } : {\alpha \in {\mathcal A} } \} $ be a family of continuous mappings of $ X $ into a quasi-normed linear space $ Y $( cf. Quasi-norm). Assume that

$$ \| T _ \alpha ( x+ y) \| \leq \| T _ \alpha ( x) \| + \| T _ \alpha ( y) \| , $$

$$ \| T _ \alpha ( ax) \| = a \| T _ \alpha ( x) \| \ \textrm{ for } a \geq 0. $$

Now, if the set $ \{ {T _ \alpha ( x) } : {\alpha \in {\mathcal A} } \} $ is bounded for each $ x \in X $, then

$$ \lim\limits _ {\alpha \rightarrow 0 } T _ \alpha ( x) = 0 $$

uniformly in $ \alpha $. Here, the convergence to zero is strong convergence, i.e. in the quasi-norm of $ Y $.

A corollary is the resonance theorem (sometimes itself called the uniform boundedness theorem): Let $ \{ {T _ \alpha } : {\alpha \in {\mathcal A} } \} $ be a family of bounded linear operators from a Banach space $ X $ into a normed linear space $ Y $. Then the boundedness of $ \{ {\| T _ \alpha ( x) \| } : {\alpha \in {\mathcal A} } \} $ for each $ x \in X $ implies the boundedness of $ \{ {\| T _ \alpha \| } : {\alpha \in {\mathcal A} } \} $, and if $ {\mathcal A} = \mathbf N $ and $ \lim\limits _ {n\rightarrow \infty } T _ {n} ( x) = T( x) $ exists for each $ x \in X $, then $ T $ is also a bounded linear operator $ X \rightarrow Y $.

Cf. also Banach–Steinhaus theorem (also called the uniform boundedness principle) and Equicontinuity.

References

[a1] K. Yosida, "Functional analysis" , Springer (1978) pp. 68ff
[a2] W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 98
How to Cite This Entry:
Uniform boundedness. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Uniform_boundedness&oldid=14233
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article