Namespaces
Variants
Actions

Difference between revisions of "Unary algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
u0950601.png
 +
$#A+1 = 75 n = 0
 +
$#C+1 = 75 : ~/encyclopedia/old_files/data/U095/U.0905060 Unary algebra,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''unoid''
 
''unoid''
  
A [[Universal algebra|universal algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950601.png" /> with a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950602.png" /> of unary operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950603.png" />. An important example of a unary algebra arises from a group homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950604.png" /> from an arbitrary group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950605.png" /> into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950606.png" /> of all permutations of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950607.png" />. Such a homomorphism is called an action of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950608.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u0950609.png" />. The definition, for each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506010.png" />, of a unary operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506011.png" /> as the permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506013.png" /> corresponding to the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506014.png" /> under the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506015.png" /> yields a unary algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506016.png" />, in which
+
A [[Universal algebra|universal algebra]] $  \langle  A , \{ {f _ {i} } : {i \in I } \} \rangle $
 +
with a family $  \{ {f _ {i} } : {i \in I } \} $
 +
of unary operations $  f _ {i} : A \rightarrow A $.  
 +
An important example of a unary algebra arises from a group homomorphism $  \phi : G \rightarrow S _ {A} $
 +
from an arbitrary group $  G $
 +
into the group $  S _ {A} $
 +
of all permutations of a set $  A $.  
 +
Such a homomorphism is called an action of the group $  G $
 +
on $  A $.  
 +
The definition, for each element $  g \in G $,  
 +
of a unary operation $  f _ {g} : A \rightarrow A $
 +
as the permutation $  \phi ( g) $
 +
in $  S _ {A} $
 +
corresponding to the element $  g $
 +
under the homomorphism $  \phi $
 +
yields a unary algebra $  \langle  A , \{ {f _ {g} } : {g \in G } \} \rangle $,  
 +
in which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506017.png" /></td> </tr></table>
+
$$
 +
f _ {1} ( x)  = x ,\ \
 +
f _ {g} ( f _ {h} ( x) )  = f _ {gh} ( x) ,\  x \in A ,\ \
 +
g , h \in G .
 +
$$
  
Every [[Module|module]] over a ring carries a unary algebra structure. Every deterministic semi-automaton (cf. [[Automata, algebraic theory of|Automaton, algebraic theory of]]) with set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506018.png" /> of states and input symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506019.png" /> may also be considered as a unary algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506021.png" /> is the state onto which the state <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506022.png" /> is mapped by the action of the input symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506023.png" />.
+
Every [[Module|module]] over a ring carries a unary algebra structure. Every deterministic semi-automaton (cf. [[Automata, algebraic theory of|Automaton, algebraic theory of]]) with set $  S $
 +
of states and input symbols $  a _ {1} \dots a _ {n} $
 +
may also be considered as a unary algebra $  \langle  S , f _ {1} \dots f _ {n} \rangle $,  
 +
where $  f _ {i} ( s) = a _ {i} s $
 +
is the state onto which the state $  s $
 +
is mapped by the action of the input symbol $  a _ {i} $.
  
A unary algebra with a single basic operation is called mono-unary, or a unar. An example of a unar is the Peano algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506024.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506026.png" />.
+
A unary algebra with a single basic operation is called mono-unary, or a unar. An example of a unar is the Peano algebra $  \langle  P , f  \rangle $,  
 +
where $  P = \{ 1 , 2 ,\dots \} $
 +
and $  f ( n) = n + 1 $.
  
 
The identities of an arbitrary unary algebra can only be of the following types:
 
The identities of an arbitrary unary algebra can only be of the following types:
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506027.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506028.png" />,
+
$  \textrm{ I } _ {1} $.  
 +
$  f _ {i _ {1}  } \dots f _ {i _ {k}  } ( x) = f _ {j _ {1}  } \dots f _ {j _ {l}  } ( x) $,
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506029.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506030.png" />,
+
$  \textrm{ II } _ {1} $.  
 +
$  f _ {i _ {1}  } \dots f _ {i _ {k}  } ( x) = f _ {j _ {1}  } \dots f _ {j _ {l}  } ( y) $,
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506031.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506032.png" />,
+
$  \textrm{ I } _ {2} $.  
 +
$  f _ {i _ {1}  } \dots f _ {i _ {k}  } ( x) = x $,
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506033.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506034.png" />,
+
$  \textrm{ II } _ {2} $.  
 +
$  f _ {i _ {1}  } \dots f _ {i _ {k}  } ( x) = y $,
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506035.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506036.png" />,
+
$  \textrm{ I } _ {3} $.  
 +
$  x = x $,
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506037.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506038.png" />.
+
$  \textrm{ II } _ {3} $.  
 +
$  x = y $.
  
The identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506039.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506040.png" />, being satisfied only by a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506041.png" />-element algebra. A variety of unary algebras defined only by identities of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506043.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506044.png" /> is said to be regular. There exists the following link between regular varieties of unary algebras and semi-groups (cf. [[#References|[1]]], [[#References|[3]]], [[#References|[4]]]).
+
The identity $  \textrm{ II } _ {2} $
 +
is equivalent to $  \textrm{ II } _ {3} $,  
 +
being satisfied only by a $  1 $-
 +
element algebra. A variety of unary algebras defined only by identities of the form $  \textrm{ I } _ {1} $,  
 +
$  \textrm{ I } _ {2} $
 +
or $  \textrm{ I } _ {3} $
 +
is said to be regular. There exists the following link between regular varieties of unary algebras and semi-groups (cf. [[#References|[1]]], [[#References|[3]]], [[#References|[4]]]).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506045.png" /> be a regular variety of unary algebras given by a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506047.png" />, of function symbols and a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506048.png" /> of identities. Each symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506049.png" /> corresponds to an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506050.png" />, and for every identity of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506051.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506052.png" /> one writes the defining relation
+
Let $  V $
 +
be a regular variety of unary algebras given by a set $  \{ {f _ {i} } : {i \in I } \} $,  
 +
$  I \neq \emptyset $,  
 +
of function symbols and a set $  \Sigma $
 +
of identities. Each symbol $  f _ {i} $
 +
corresponds to an element $  a _ {i} $,  
 +
and for every identity of the form $  \textrm{ I } _ {1} $
 +
from $  \Sigma $
 +
one writes the defining relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506053.png" /></td> </tr></table>
+
$$
 +
a _ {i _ {1}  } \dots a _ {i _ {k}  }  = \
 +
a _ {j _ {1}  } \dots a _ {j _ {l}  } .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506054.png" /> be the [[Semi-group|semi-group]] with generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506056.png" />, and the above defining relations, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506057.png" /> be the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506058.png" /> with an identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506059.png" /> adjoined. For every relation of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506060.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506061.png" /> (if they are any) one writes the defining relation as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506062.png" />. The semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506063.png" /> obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506064.png" /> by adjoining these defining relations is said to be associated with the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506065.png" />. There are many ways of characterizing this variety. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506066.png" /> contains only identities of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506067.png" />, then one may restrict oneself to the construction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506068.png" />. By defining a unary operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506069.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506070.png" /> one obtains a unary algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506071.png" />, which is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506072.png" />-free algebra of rank 1. The group of all automorphisms of the unary algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506073.png" /> is isomorphic to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506074.png" /> of invertible elements of the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095060/u09506075.png" />.
+
Let $  P $
 +
be the [[Semi-group|semi-group]] with generators $  a _ {i} $,  
 +
$  i \in I $,  
 +
and the above defining relations, and let $  P  ^ {1} $
 +
be the semi-group $  P $
 +
with an identity $  e $
 +
adjoined. For every relation of the form $  \textrm{ I } _ {2} $
 +
in $  \Sigma $(
 +
if they are any) one writes the defining relation as $  a _ {i _ {1}  } \dots a _ {i _ {k}  } = e $.  
 +
The semi-group $  P _ {V} $
 +
obtained from $  P  ^ {1} $
 +
by adjoining these defining relations is said to be associated with the variety $  V $.  
 +
There are many ways of characterizing this variety. If $  \Sigma $
 +
contains only identities of the form $  \textrm{ I } _ {1} $,  
 +
then one may restrict oneself to the construction of $  P $.  
 +
By defining a unary operation $  f _ {i} ( x) = x a _ {i} $
 +
in $  P _ {V} $
 +
one obtains a unary algebra $  \langle  P _ {V} , \{ {f _ {i} } : {i \in I } \} \rangle $,  
 +
which is a $  V $-
 +
free algebra of rank 1. The group of all automorphisms of the unary algebra $  \langle  P _ {V} , \{ {f _ {i} } : {i \in I } \} \rangle $
 +
is isomorphic to the group $  P _ {V}  ^ {*} $
 +
of invertible elements of the semi-group $  P _ {V} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1972–1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Birkhoff,  T. Bartee,  "Modern applied algebra" , McGraw-Hill  (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D.M. Smirnov,  "Regular varieties of algebras"  ''Algebra and Logic'' , '''15''' :  3  (1976)  pp. 207–213  ''Algebra i Logika'' , '''15''' :  3  (1976)  pp. 331–342</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  D.M. Smirnov,  "Correspondence between regular varieties of unary algebras and semigroups"  ''Algebra and Logic'' , '''17''' :  4  (1978)  pp. 310–315  ''Algebra i Logika'' , '''17''' :  4  (1978)  pp. 468–477</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B. Jónsson,  "Topics in universal algebra" , Springer  (1972)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1972–1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Birkhoff,  T. Bartee,  "Modern applied algebra" , McGraw-Hill  (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D.M. Smirnov,  "Regular varieties of algebras"  ''Algebra and Logic'' , '''15''' :  3  (1976)  pp. 207–213  ''Algebra i Logika'' , '''15''' :  3  (1976)  pp. 331–342</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  D.M. Smirnov,  "Correspondence between regular varieties of unary algebras and semigroups"  ''Algebra and Logic'' , '''17''' :  4  (1978)  pp. 310–315  ''Algebra i Logika'' , '''17''' :  4  (1978)  pp. 468–477</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B. Jónsson,  "Topics in universal algebra" , Springer  (1972)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
Regular varieties of unary algebras can be characterized in categorical terms, as those for which the forgetful functor to the category of sets preserves coproducts (that is, such that the coproduct of a family of algebras in the variety is carried by the disjoint union of their carrier sets). The semi-group associated with such a variety can also be recovered categorically, without having recourse (as in the main article above) to a specific presentation of the variety by operations and identities: it is the semi-group of endomorphisms of the forgetful functor from the variety to sets.
 
Regular varieties of unary algebras can be characterized in categorical terms, as those for which the forgetful functor to the category of sets preserves coproducts (that is, such that the coproduct of a family of algebras in the variety is carried by the disjoint union of their carrier sets). The semi-group associated with such a variety can also be recovered categorically, without having recourse (as in the main article above) to a specific presentation of the variety by operations and identities: it is the semi-group of endomorphisms of the forgetful functor from the variety to sets.

Latest revision as of 08:27, 6 June 2020


unoid

A universal algebra $ \langle A , \{ {f _ {i} } : {i \in I } \} \rangle $ with a family $ \{ {f _ {i} } : {i \in I } \} $ of unary operations $ f _ {i} : A \rightarrow A $. An important example of a unary algebra arises from a group homomorphism $ \phi : G \rightarrow S _ {A} $ from an arbitrary group $ G $ into the group $ S _ {A} $ of all permutations of a set $ A $. Such a homomorphism is called an action of the group $ G $ on $ A $. The definition, for each element $ g \in G $, of a unary operation $ f _ {g} : A \rightarrow A $ as the permutation $ \phi ( g) $ in $ S _ {A} $ corresponding to the element $ g $ under the homomorphism $ \phi $ yields a unary algebra $ \langle A , \{ {f _ {g} } : {g \in G } \} \rangle $, in which

$$ f _ {1} ( x) = x ,\ \ f _ {g} ( f _ {h} ( x) ) = f _ {gh} ( x) ,\ x \in A ,\ \ g , h \in G . $$

Every module over a ring carries a unary algebra structure. Every deterministic semi-automaton (cf. Automaton, algebraic theory of) with set $ S $ of states and input symbols $ a _ {1} \dots a _ {n} $ may also be considered as a unary algebra $ \langle S , f _ {1} \dots f _ {n} \rangle $, where $ f _ {i} ( s) = a _ {i} s $ is the state onto which the state $ s $ is mapped by the action of the input symbol $ a _ {i} $.

A unary algebra with a single basic operation is called mono-unary, or a unar. An example of a unar is the Peano algebra $ \langle P , f \rangle $, where $ P = \{ 1 , 2 ,\dots \} $ and $ f ( n) = n + 1 $.

The identities of an arbitrary unary algebra can only be of the following types:

$ \textrm{ I } _ {1} $. $ f _ {i _ {1} } \dots f _ {i _ {k} } ( x) = f _ {j _ {1} } \dots f _ {j _ {l} } ( x) $,

$ \textrm{ II } _ {1} $. $ f _ {i _ {1} } \dots f _ {i _ {k} } ( x) = f _ {j _ {1} } \dots f _ {j _ {l} } ( y) $,

$ \textrm{ I } _ {2} $. $ f _ {i _ {1} } \dots f _ {i _ {k} } ( x) = x $,

$ \textrm{ II } _ {2} $. $ f _ {i _ {1} } \dots f _ {i _ {k} } ( x) = y $,

$ \textrm{ I } _ {3} $. $ x = x $,

$ \textrm{ II } _ {3} $. $ x = y $.

The identity $ \textrm{ II } _ {2} $ is equivalent to $ \textrm{ II } _ {3} $, being satisfied only by a $ 1 $- element algebra. A variety of unary algebras defined only by identities of the form $ \textrm{ I } _ {1} $, $ \textrm{ I } _ {2} $ or $ \textrm{ I } _ {3} $ is said to be regular. There exists the following link between regular varieties of unary algebras and semi-groups (cf. [1], [3], [4]).

Let $ V $ be a regular variety of unary algebras given by a set $ \{ {f _ {i} } : {i \in I } \} $, $ I \neq \emptyset $, of function symbols and a set $ \Sigma $ of identities. Each symbol $ f _ {i} $ corresponds to an element $ a _ {i} $, and for every identity of the form $ \textrm{ I } _ {1} $ from $ \Sigma $ one writes the defining relation

$$ a _ {i _ {1} } \dots a _ {i _ {k} } = \ a _ {j _ {1} } \dots a _ {j _ {l} } . $$

Let $ P $ be the semi-group with generators $ a _ {i} $, $ i \in I $, and the above defining relations, and let $ P ^ {1} $ be the semi-group $ P $ with an identity $ e $ adjoined. For every relation of the form $ \textrm{ I } _ {2} $ in $ \Sigma $( if they are any) one writes the defining relation as $ a _ {i _ {1} } \dots a _ {i _ {k} } = e $. The semi-group $ P _ {V} $ obtained from $ P ^ {1} $ by adjoining these defining relations is said to be associated with the variety $ V $. There are many ways of characterizing this variety. If $ \Sigma $ contains only identities of the form $ \textrm{ I } _ {1} $, then one may restrict oneself to the construction of $ P $. By defining a unary operation $ f _ {i} ( x) = x a _ {i} $ in $ P _ {V} $ one obtains a unary algebra $ \langle P _ {V} , \{ {f _ {i} } : {i \in I } \} \rangle $, which is a $ V $- free algebra of rank 1. The group of all automorphisms of the unary algebra $ \langle P _ {V} , \{ {f _ {i} } : {i \in I } \} \rangle $ is isomorphic to the group $ P _ {V} ^ {*} $ of invertible elements of the semi-group $ P _ {V} $.

References

[1] A.I. Mal'tsev, "Algebraic systems" , Springer (1972–1973) (Translated from Russian)
[2] G. Birkhoff, T. Bartee, "Modern applied algebra" , McGraw-Hill (1970)
[3] D.M. Smirnov, "Regular varieties of algebras" Algebra and Logic , 15 : 3 (1976) pp. 207–213 Algebra i Logika , 15 : 3 (1976) pp. 331–342
[4] D.M. Smirnov, "Correspondence between regular varieties of unary algebras and semigroups" Algebra and Logic , 17 : 4 (1978) pp. 310–315 Algebra i Logika , 17 : 4 (1978) pp. 468–477
[5] B. Jónsson, "Topics in universal algebra" , Springer (1972)

Comments

Regular varieties of unary algebras can be characterized in categorical terms, as those for which the forgetful functor to the category of sets preserves coproducts (that is, such that the coproduct of a family of algebras in the variety is carried by the disjoint union of their carrier sets). The semi-group associated with such a variety can also be recovered categorically, without having recourse (as in the main article above) to a specific presentation of the variety by operations and identities: it is the semi-group of endomorphisms of the forgetful functor from the variety to sets.

How to Cite This Entry:
Unary algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unary_algebra&oldid=18705
This article was adapted from an original article by D.M. Smirnov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article