Namespaces
Variants
Actions

Difference between revisions of "Twins"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (TeX encoding is done)
Line 1: Line 1:
 +
{{TEX|done}}
 +
 
''prime twins''
 
''prime twins''
  
Two primes the difference between which is 2. Generalized twins are pairs of successive primes with difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094470/t0944701.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094470/t0944702.png" /> is a given natural number. Examples of twins are readily found on consulting the table of prime numbers. Such are, e.g., 3 and 5, 5 and 7, 11 and 13, 17 and 19. Generalized twins — for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094470/t0944703.png" />, for example — include 13 and 17, 19 and 23, 43 and 47. It is not yet (1992) known if the set of twins, and even the set of generalized twins for any given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094470/t0944704.png" />, is infinite. This is the twin problem.
+
Two primes the difference between which is 2. Generalized twins are pairs of successive primes with difference $2m$, where $m$ is a given natural number. Examples of twins are readily found on consulting the table of prime numbers. Such are, e.g., 3 and 5, 5 and 7, 11 and 13, 17 and 19. Generalized twins — for $m=2$, for example — include 13 and 17, 19 and 23, 43 and 47. It is not yet (1992) known if the set of twins, and even the set of generalized twins for any given $m$, is infinite. This is the twin problem.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.-K. Hua,  "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' :  2  (1959)  (Heft 13, Teil 1)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Trost,  "Primzahlen" , Birkhäuser  (1953)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.-K. Hua,  "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' :  2  (1959)  (Heft 13, Teil 1)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Trost,  "Primzahlen" , Birkhäuser  (1953)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
It is known that the infinite sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094470/t0944705.png" /> over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094470/t0944706.png" /> belonging to a twin is finite, see [[Brun sieve|Brun sieve]]; [[Brun theorem|Brun theorem]].
+
It is known that the infinite sum $\sum 1/p$ over all $p$ belonging to a twin is finite, see [[Brun sieve|Brun sieve]]; [[Brun theorem|Brun theorem]].

Revision as of 13:20, 10 December 2012


prime twins

Two primes the difference between which is 2. Generalized twins are pairs of successive primes with difference $2m$, where $m$ is a given natural number. Examples of twins are readily found on consulting the table of prime numbers. Such are, e.g., 3 and 5, 5 and 7, 11 and 13, 17 and 19. Generalized twins — for $m=2$, for example — include 13 and 17, 19 and 23, 43 and 47. It is not yet (1992) known if the set of twins, and even the set of generalized twins for any given $m$, is infinite. This is the twin problem.

References

[1] L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1)
[2] E. Trost, "Primzahlen" , Birkhäuser (1953)

Comments

It is known that the infinite sum $\sum 1/p$ over all $p$ belonging to a twin is finite, see Brun sieve; Brun theorem.

How to Cite This Entry:
Twins. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Twins&oldid=29162
This article was adapted from an original article by N.I. Klimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article