Namespaces
Variants
Actions

Transition function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


transition probability

2020 Mathematics Subject Classification: Primary: 60J35 [MSN][ZBL]

A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space $ ( E, {\mathcal B}) $ be such that the $ \sigma $- algebra $ {\mathcal B} $ contains all one-point subsets from $ E $, and let $ T $ be a subset of the real line $ \mathbf R $. A function $ P( s, x; t, B) $ given for $ s, t \in T $, $ s \leq t $, $ x \in E $ and $ B \in {\mathcal B} $ is called a transition function for $ ( E, {\mathcal B}) $ if: a) for given $ s $, $ x $ and $ t $, it is a measure on $ {\mathcal B} $, with $ P( s, x; t, B) \leq 1 $; b) for given $ s $, $ t $ and $ B $, it is a $ {\mathcal B} $- measurable function of the point $ x $; c) $ P( s, x; s, \{ x \} ) \equiv 1 $ and for all limit points $ s $ of $ T $ from the right in the topology of $ \mathbf R $,

$$ \lim\limits _ {\begin{array}{c} t\downarrow s \\ t \in T \end{array} } P( s, x; t, E) = 1; $$

and d) for all $ x \in E $, $ B \in {\mathcal B} $ and $ s \leq t \leq u $ from $ T $, the Kolmogorov–Chapman equation is fulfilled:

$$ \tag{* } P( s, x; u , B) = \int\limits _ { E } P( s, x; t, dy) P( t, y; u , B) $$

(in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if $ P( s, x; t, E) \equiv 1 $, and a subMarkov transition function otherwise. If $ E $ is at most countable, then the transition function is specified by means of the matrix of transition probabilities

$$ P ^ {st} = \| P _ {xy} ( s, t) \| $$

(see Transition probabilities; Matrix of transition probabilities). It often happens that for any admissible $ s $, $ x $ and $ t $ the measure $ P( s, x; t, \cdot ) $ has a density $ p( s, x; t, \cdot ) $ with respect to a certain measure. If in this case the following form of equation (*) is satisfied:

$$ p( s, x; u , z) = \int\limits _ { E } p( s, x; t, y) p( t, y; u , z) dy $$

for any $ x $ and $ z $ from $ E $ and $ s \leq t \leq u $ from $ T $, then $ p( s, x; t, y) $ is called a transition density.

Under very general conditions (cf. [N], [GS]), the transition function $ P( s, x; t, B) $ can be related to a Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} ^ {s} , {\mathsf P} _ {s,x} ) $ for which $ {\mathsf P} _ {s,x} \{ x _ {t} \in B \} = P( s, x; t, B) $( in the case of a Markov transition function, this process does not terminate, i.e. $ \zeta = \infty $ $ P _ {s,x} $- a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function [K].

Let $ T $ be homogeneous in the sense that the set of values of $ t- s $ for $ s \leq t $ from $ T $ forms a semi-group $ \widetilde{T} $ in $ \mathbf R $ under addition (for example, $ T = \mathbf R $, $ T = \{ {t \in \mathbf R } : {t \geq 0 } \} $, $ T = \{ 0, 1 ,\dots \} $). If, moreover, the transition function $ P( s, x; t, B) $ depends only on the difference $ t- s $, i.e. if $ P( s, x; t, B) = P( t- s, x, B) $, where $ P( t, x, B) $ is a function of $ t \in \widetilde{T} $, $ x \in E $, $ B \in {\mathcal B} $ satisfying the corresponding form of conditions a)–d), then $ P( s, x; t, B) $ is called a homogeneous transition function. The latter name is also given to a function $ P( t, x, B) $ for which (*) takes the form

$$ P( t+ s, x, B) = \int\limits _ { E } P( t, x, dy) P( s, y, B), $$

$$ s, t \in \widetilde{T} ,\ x \in E ,\ B \in {\mathcal B} . $$

For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces $ ( E _ {t} , {\mathcal B} _ {t} ) $, $ t \in T $, while a transition function with respect to this family is defined as a function $ P( s, x; t, B) $, where $ s, t \in T $, $ s \leq t $, $ x \in E _ {s} $, $ B \in {\mathcal B} _ {t} $, that satisfies a suitable modification of conditions a)–d).

References

[N] J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) MR0272004 Zbl 0203.49901
[GS] I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027
[K] S.E. Kuznetsov, "Any Markov process in a Borel space has a transition function" Theory Probab. Appl. , 25 : 2 (1980) pp. 384–388 Teor. Veroyatnost. i ee Primenen. , 25 : 2 (1980) pp. 389–393 MR0572574 Zbl 0456.60077 Zbl 0431.60071

Comments

For additional references see also Markov chain; Markov process.

References

[DM] C. Dellacherie, P.A. Meyer, "Probabilities and potential" , 1–3 , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) MR0939365 MR0898005 MR0727641 MR0745449 MR0566768 MR0521810 Zbl 0716.60001 Zbl 0494.60002 Zbl 0494.60001
[S] M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) MR0958914 Zbl 0649.60079
[AM] S. Albeverio, Z.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" Forum Math. , 3 (1991) pp. 389–400
How to Cite This Entry:
Transition function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transition_function&oldid=49013
This article was adapted from an original article by M.G. Shur (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article