Namespaces
Variants
Actions

Difference between revisions of "Transfinite diameter"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (Undo revision 49009 by Ulf Rehmann (talk))
Tag: Undo
Line 1: Line 1:
<!--
 
t0936701.png
 
$#A+1 = 155 n = 1
 
$#C+1 = 155 : ~/encyclopedia/old_files/data/T093/T.0903670 Transfinite diameter
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
 
{{TEX|auto}}
 
{{TEX|done}}
 
 
 
''of a compact set''
 
''of a compact set''
  
A characteristic $  d = d ( E) $
+
A characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936701.png" /> of a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936702.png" /> in the complex plane serving as a geometric interpretation of the [[Capacity|capacity]] of this set. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936703.png" /> be a compact infinite set in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936704.png" />-plane. Then the quantity
of a compact set $  E $
 
in the complex plane serving as a geometric interpretation of the [[Capacity|capacity]] of this set. Let $  E $
 
be a compact infinite set in the $  z $-
 
plane. Then the quantity
 
  
$$ \tag{1 }
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936705.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
d _ {n} ( E)  = \
 
\left \{
 
\max _ {z _ {k} , z _ {l} \in E } \
 
\prod _ {1 \leq  k < l \leq  n }
 
[ z _ {k} , z _ {l} ]
 
\right \} ^ {2/[ n ( n - 1)] } ,
 
$$
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936706.png" /></td> </tr></table>
= 2, 3 \dots
 
$$
 
  
where $  [ a, b] = | a - b | $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936707.png" /> is the Euclidean distance between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936708.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t0936709.png" />, is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367011.png" />-th diameter of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367012.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367013.png" /> is the Euclidean diameter of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367014.png" />. The points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367016.png" /> for which the maximum on the right-hand side of (1) is realized are called the Fekete points (or Vandermonde nodes) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367017.png" />. The sequence of quantities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367018.png" /> is non-increasing: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367020.png" /> so that the following limit exists:
is the Euclidean distance between $  a $
 
and $  b $,  
 
is called the $  n $-
 
th diameter of $  E $.  
 
In particular, $  d _ {2} ( E) $
 
is the Euclidean diameter of $  E $.  
 
The points $  z _ {n,1} \dots z _ {n,n} $
 
of $  E $
 
for which the maximum on the right-hand side of (1) is realized are called the Fekete points (or Vandermonde nodes) for $  E $.  
 
The sequence of quantities $  d _ {n} ( E) $
 
is non-increasing: $  d _ {n + 1 }  ( E) \leq  d _ {n} ( E) $,  
 
$  n = 2, 3 \dots $
 
so that the following limit exists:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367021.png" /></td> </tr></table>
\lim\limits _ {n \rightarrow \infty }  d _ {n} ( E)  = d ( E).
 
$$
 
  
The quantity $  d ( E) $
+
The quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367022.png" /> is also called the transfinite diameter of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367024.png" /> is a finite set, then one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367025.png" />. The transfinite diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367026.png" />, the [[Chebyshev constant|Chebyshev constant]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367027.png" /> and the capacity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367028.png" /> are equal:
is also called the transfinite diameter of $  E $.  
 
If $  E $
 
is a finite set, then one has $  d ( E) = 0 $.  
 
The transfinite diameter $  d ( E) $,  
 
the [[Chebyshev constant|Chebyshev constant]] $  \tau ( E) $
 
and the capacity $  C ( E) $
 
are equal:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367029.png" /></td> </tr></table>
d ( E)  = \tau ( E)  = C ( E).
 
$$
 
  
The transfinite diameter of a set $  E $
+
The transfinite diameter of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367030.png" /> has the following properties: 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367031.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367032.png" />; 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367033.png" /> is a fixed complex number and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367034.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367035.png" />; 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367036.png" /> is the set of points at a distance at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367037.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367038.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367039.png" />; 4) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367040.png" /> is the set of roots of the equation
has the following properties: 1) if $  E _ {1} \subset  E $,  
 
then $  d ( E _ {1} ) \leq  d ( E) $;  
 
2) if $  a $
 
is a fixed complex number and $  E _ {1} = \{ {w } : {w = az,  z \in E } \} $,  
 
then $  d ( E _ {1} ) = | a | d ( E) $;  
 
3) if $  E _  \epsilon  $
 
is the set of points at a distance at most $  \epsilon $
 
from $  E $,  
 
then $  \lim\limits _ {\epsilon \rightarrow 0 }  d ( E _  \epsilon  ) = d ( E) $;  
 
4) if $  E  ^ {*} $
 
is the set of roots of the equation
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367041.png" /></td> </tr></table>
Q ( z)  = z  ^ {k} + a _ {1} z ^ {k - 1 } + \dots + a _ {k}  = w,
 
$$
 
  
where $  Q ( z) $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367042.png" /> is a given polynomial and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367043.png" /> runs through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367044.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367045.png" />. The transfinite diameter of a circle is equal to its radius; the transfinite diameter of a line segment is equal to a quarter of its length.
is a given polynomial and $  w $
 
runs through $  E $,  
 
then $  d ( E  ^ {*} ) = \{ d ( E) \}  ^ {1/k} $.  
 
The transfinite diameter of a circle is equal to its radius; the transfinite diameter of a line segment is equal to a quarter of its length.
 
  
Let $  E $
+
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367046.png" /> be a bounded continuum and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367047.png" /> be the component of the complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367048.png" /> with respect to the extended plane that contains the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367049.png" />. Then the transfinite diameter of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367050.png" /> is equal to the conformal radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367051.png" /> (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367052.png" />; cf. [[Conformal radius of a domain|Conformal radius of a domain]]).
be a bounded continuum and let $  D $
 
be the component of the complement of $  E $
 
with respect to the extended plane that contains the point $  \infty $.  
 
Then the transfinite diameter of $  E $
 
is equal to the conformal radius of $  D $(
 
with respect to $  \infty $;  
 
cf. [[Conformal radius of a domain|Conformal radius of a domain]]).
 
  
The corresponding notions for sets in the hyperbolic and elliptic planes are defined as follows. Consider as a model of the hyperbolic plane the disc $  | z | < 1 $
+
The corresponding notions for sets in the hyperbolic and elliptic planes are defined as follows. Consider as a model of the hyperbolic plane the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367053.png" /> with metric defined by the line element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367054.png" /> and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367055.png" /> is a closed infinite set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367056.png" />. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367058.png" />-th hyperbolic diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367059.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367060.png" /> is defined by (1) in which
with metric defined by the line element $  ds _ {h} = | dz |/( 1 - | z |  ^ {2} ) $
 
and suppose that $  E $
 
is a closed infinite set in $  | z | < 1 $.  
 
Then the $  n $-
 
th hyperbolic diameter $  d _ {n,h} ( E) $
 
of $  E $
 
is defined by (1) in which
 
  
$$ \tag{2 }
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367061.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
[ a, b]  = \
 
\left |
 
  
\frac{a - b }{1 - \overline{a}\; b }
+
is the hyperbolic pseudo-distance between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367063.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367065.png" /> is the hyperbolic distance between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367066.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367067.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367068.png" /> (see [[Hyperbolic metric|Hyperbolic metric]]). As in the Euclidean case, the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367069.png" /> is non-increasing and the following limit exists:
\
 
\right |
 
$$
 
  
is the hyperbolic pseudo-distance between  $  a $
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367070.png" /></td> </tr></table>
and  $  b $,
 
that is,  $  [ a, b] = \mathop{\rm tanh}  \rho _ {h} ( a, b) $,
 
where  $  \rho _ {h} ( a, b) $
 
is the hyperbolic distance between  $  a $
 
and  $  b $
 
in  $  | z | < 1 $(
 
see [[Hyperbolic metric|Hyperbolic metric]]). As in the Euclidean case, the sequence  $  d _ {n,h} ( E) $
 
is non-increasing and the following limit exists:
 
  
$$
+
It is called the hyperbolic transfinite diameter of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367071.png" />. Define the hyperbolic Chebyshev constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367072.png" /> and the hyperbolic capacity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367073.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367074.png" /> via the hyperbolic pseudo-distance (2) between the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367075.png" /> by analogy with the Chebyshev constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367076.png" /> and capacity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367077.png" /> defined via the Euclidean distance between points of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367078.png" />-plane. Then one obtains
\lim\limits _ {n \rightarrow \infty }  d _ {n,h} ( E) = d _ {h} ( E).
 
$$
 
  
It is called the hyperbolic transfinite diameter of  $  E $.
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367079.png" /></td> </tr></table>
Define the hyperbolic Chebyshev constant  $  \tau _ {h} ( E) $
 
and the hyperbolic capacity  $  C _ {h} ( E) $
 
of  $  E $
 
via the hyperbolic pseudo-distance (2) between the points of  $  | z | < 1 $
 
by analogy with the Chebyshev constant  $  \tau ( E) $
 
and capacity  $  C ( E) $
 
defined via the Euclidean distance between points of the  $  z $-
 
plane. Then one obtains
 
  
$$
+
The hyperbolic transfinite diameter is invariant under the full group of hyperbolic isometries. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367080.png" /> is a continuum, then there is a simple relationship between the hyperbolic transfinite diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367081.png" /> and conformal mapping. Namely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367082.png" /> be a continuum in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367083.png" /> such that the complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367084.png" /> with respect to this disc is conformally equivalent to the annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367085.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367086.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367087.png" />.
d _ {h} ( E)  = \tau _ {h} ( E)  = C _ {h} ( E).
 
$$
 
  
The hyperbolic transfinite diameter is invariant under the full group of hyperbolic isometries. If  $  E $
+
Consider as a model of the elliptic plane the extended complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367088.png" />-plane with the metric of its Riemann sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367089.png" /> of diameter 1, tangent to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367090.png" />-plane at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367091.png" />, that is, the metric defined by the line element
is a continuum, then there is a simple relationship between the hyperbolic transfinite diameter  $  d _ {n} ( E) $
 
and conformal mapping. Namely, let  $  E $
 
be a continuum in the disc  $  | z | < 1 $
 
such that the complement of  $  E $
 
with respect to this disc is conformally equivalent to the annulus  $  r < | w | < 1 $,
 
0 < r < 1 $.  
 
Then  $  r = d _ {n} ( E) $.
 
  
Consider as a model of the elliptic plane the extended complex  $  z $-
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367092.png" /></td> </tr></table>
plane with the metric of its Riemann sphere  $  K $
 
of diameter 1, tangent to the  $  z $-
 
plane at the point  $  z = 0 $,
 
that is, the metric defined by the line element
 
  
$$
+
furthermore, let the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367094.png" /> be identified; these correspond to diametrically-opposite points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367095.png" /> under stereographic projection of the extended <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367096.png" />-plane onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367097.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367098.png" /> be a closed infinite set in the extended <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367099.png" />-plane, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670100.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670101.png" />. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670103.png" />-th elliptic diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670104.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670105.png" /> is defined by (1), in which
ds _ {e}  = \
 
  
\frac{| dz | }{1 + | z |  ^ {2} }
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670106.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
;
 
$$
 
  
furthermore, let the points $  z $
+
is the elliptic pseudo-distance between points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670107.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670108.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670109.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670110.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670111.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670112.png" />) is the elliptic distance between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670113.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670114.png" />. As in the previous cases, the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670115.png" /> is non-increasing and the following limit, called the elliptic transfinite diameter of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670116.png" />, exists:
and $  z  ^ {*} = - 1/z $
 
be identified; these correspond to diametrically-opposite points of $  K $
 
under stereographic projection of the extended  $  z $-
 
plane onto  $  K $.  
 
Let  $  E $
 
be a closed infinite set in the extended  $  z $-
 
plane, $  E \cap E  ^ {*} = \emptyset $,  
 
where $  E  ^ {*} = \{ {- 1/z } : {z \in E } \} $.  
 
Then the $  n $-
 
th elliptic diameter $  d _ {n,e} ( E) $
 
of $  E $
 
is defined by (1), in which
 
  
$$ \tag{3 }
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670117.png" /></td> </tr></table>
[ a, b]  = \
 
\left |
 
  
\frac{a - b }{1 + \overline{a}\; b }
+
Define the elliptic Chebyshev constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670118.png" /> and the elliptic capacity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670119.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670120.png" /> via the elliptic pseudo-distance (3). Then one obtains:
\
 
\right |
 
$$
 
  
is the elliptic pseudo-distance between points  $  a $
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670121.png" /></td> </tr></table>
and  $  b $
 
of  $  E $,
 
that is,  $  [ a, b] = \mathop{\rm tan}  \rho _ {e} ( a, b) $,
 
where  $  \rho _ {e} ( a, b) $(
 
< \pi /2 $)
 
is the elliptic distance between  $  a $
 
and  $  b $.
 
As in the previous cases, the sequence  $  d _ {n,e} ( E) $
 
is non-increasing and the following limit, called the elliptic transfinite diameter of  $  E $,
 
exists:
 
  
$$
+
The elliptic transfinite diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670122.png" /> is invariant under the group of fractional-linear transformations
\lim\limits _ {n \rightarrow \infty }  d _ {n,e} ( E)  = d _ {e} ( E).
 
$$
 
  
Define the elliptic Chebyshev constant  $  \tau _ {e} ( E) $
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670123.png" /></td> </tr></table>
and the elliptic capacity  $  C _ {e} ( E) $
 
of  $  E $
 
via the elliptic pseudo-distance (3). Then one obtains:
 
  
$$
+
of the extended <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670124.png" />-plane onto itself, supplemented by the group of reflections in the elliptic lines. The first of these groups is isomorphic to the group of reflections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670125.png" /> about planes passing through its centre. With this definition the elliptic transfinite diameter of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670126.png" /> is related to conformal mapping in the following way. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670127.png" /> is a continuum in the extended <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670128.png" />-plane, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670129.png" />, and the complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670130.png" /> with respect to the extended plane is conformally equivalent to the annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670131.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670132.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670133.png" />.
d _ {e} ( E)  = \tau _ {e} ( E)  = C _ {e} ( E).
 
$$
 
  
The elliptic transfinite diameter $  d _ {e} ( E) $
+
The notion of the transfinite diameter can be generalized to compacta <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670134.png" /> in a multi-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670135.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670136.png" />, and is connected with [[Potential theory|potential theory]]. Let, for points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670137.png" />,
is invariant under the group of fractional-linear transformations
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670138.png" /></td> </tr></table>
z  \rightarrow \
 
  
\frac{pz + q }{- \overline{q}\; z + p }
+
be a fundamental solution of the [[Laplace equation|Laplace equation]], and for the set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670139.png" />, let
,\ \
 
| p |  ^ {2} + | q |  ^ {2} = 1,
 
$$
 
  
of the extended  $  z $-
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670140.png" /></td> </tr></table>
plane onto itself, supplemented by the group of reflections in the elliptic lines. The first of these groups is isomorphic to the group of reflections of  $  K $
 
about planes passing through its centre. With this definition the elliptic transfinite diameter of  $  E $
 
is related to conformal mapping in the following way. If  $  E $
 
is a continuum in the extended  $  z $-
 
plane,  $  E \cap E  ^ {*} = \emptyset $,
 
and the complement of  $  E \cup E  ^ {*} $
 
with respect to the extended plane is conformally equivalent to the annulus  $  r < | w | < 1/r $,
 
$  0 < r < 1 $,
 
then  $  r = d _ {e} ( E) $.
 
  
The notion of the transfinite diameter can be generalized to compacta  $  E $
+
Then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670141.png" /> one has
in a multi-dimensional Euclidean space  $  \mathbf R  ^ {m} $,
 
$  m \geq  2 $,
 
and is connected with [[Potential theory|potential theory]]. Let, for points  $  x \in \mathbf R  ^ {m} $,
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670142.png" /></td> </tr></table>
H (| x |)  = \
 
\left \{
 
  
be a fundamental solution of the [[Laplace equation|Laplace equation]], and for the set of points  $  ( x _ {j} ) _ {j = 1 }  ^ {n} \subset  E $,
+
while for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670143.png" /> it is expedient (see [[#References|[4]]]) to take
let
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670144.png" /></td> </tr></table>
\chi _ {n} ( E)  = \
 
\inf
 
\left \{ { {
 
\frac{2}{n ( n - 1) }
 
}
 
\sum _ {\begin{array}{c}
 
j, k = 1 \\
 
j < k
 
\end{array}
 
} ^ { n }
 
H (| x _ {j} - x _ {k} |) } : {
 
( x _ {j} ) _ {j = 1 }  ^ {n} \subset  E
 
} \right \}
 
.
 
$$
 
  
Then for $ m = 2 $
+
====References====
one has
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Fekete,  "Ueber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten"  ''Math. Z.'' , '''17'''  (1923) pp. 228–249</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Pólya,  G. Szegö,  "Ueber den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen" ''J. Reine Angew. Math.'' , '''165''' (1931pp. 4–49</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L. Carleson,  "Selected problems on exceptional sets" , v. Nostrand  (1967)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.I. Smirnov,  A.N. Lebedev,  "Functions of a complex variable" , M.I.T. (1968) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M. Tsuji,  "Potential theory in modern function theory" , Chelsea, reprint  (1959)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  R. Kühnau,  "Geometrie der konformen Abbildung auf der hyperbolischen und der elliptischen Ebene" , Deutsch. Verlag Wissenschaft.  (1974)</TD></TR></table>
 
 
$$
 
d ( E= C ( E)  = \
 
  \mathop{\rm exp} \left ( - \lim\limits _ {n \rightarrow \infty } \chi _ {n} ( E) \right ) ;
 
$$
 
 
 
while for $ m \geq 3 $
 
it is expedient (see [[#References|[4]]]) to take
 
  
$$
 
d ( E)  =  C ( E)  = \
 
{
 
\frac{1}{\lim\limits _ {n \rightarrow \infty }  \chi _ {n} ( E) }
 
} .
 
$$
 
  
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Fekete,  "Ueber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten"  ''Math. Z.'' , '''17'''  (1923)  pp. 228–249</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Pólya,  G. Szegö,  "Ueber den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen"  ''J. Reine Angew. Math.'' , '''165'''  (1931)  pp. 4–49</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L. Carleson,  "Selected problems on exceptional sets" , v. Nostrand  (1967)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.I. Smirnov,  A.N. Lebedev,  "Functions of a complex variable" , M.I.T.  (1968)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M. Tsuji,  "Potential theory in modern function theory" , Chelsea, reprint  (1959)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  R. Kühnau,  "Geometrie der konformen Abbildung auf der hyperbolischen und der elliptischen Ebene" , Deutsch. Verlag Wissenschaft.  (1974)</TD></TR></table>
 
  
 
====Comments====
 
====Comments====
Outer radius is another term for transfinite diameter. See [[#References|[a1]]] for a survey on connections between transfinite diameter, [[Robin constant|Robin constant]] and [[Capacity|capacity]] in $  \mathbf R  ^ {2} $
+
Outer radius is another term for transfinite diameter. See [[#References|[a1]]] for a survey on connections between transfinite diameter, [[Robin constant|Robin constant]] and [[Capacity|capacity]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670145.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670146.png" />.
or $  \mathbf R  ^ {n} $.
 
  
The notion of transfinite diameter also makes good sense in several complex variables, if interpreted in the correct way: (1) with $  [ a, b] = | a- b | $
+
The notion of transfinite diameter also makes good sense in several complex variables, if interpreted in the correct way: (1) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670147.png" /> is a root of a Vandermondian determinant:
is a root of a Vandermondian determinant:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670148.png" /></td> </tr></table>
d _ {n} ( E)  = ( \max _ {x ^ {( n ) }
 
\in E  ^ {n} } | V ( x  ^ {(} n) ) | ) ^ {2/n( n- 1) } ,
 
$$
 
  
 
where
 
where
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670149.png" /></td> </tr></table>
V( x  ^ {(} n) )  =   \mathop{\rm det}
 
[ x _ {i}  ^ {j} ] _ {\begin{array} {c}
 
i = 1 \dots n \\
 
j= 0 \dots n- 1
 
\end{array}
 
} .
 
$$
 
  
In $  \mathbf C  ^ {n} $,  
+
In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670150.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670151.png" /> be an ordered system of monomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670152.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670153.png" /> be a point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670154.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670155.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670156.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670157.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670158.png" />. The related capacity is the one associated to the complex Monge–Ampère operator.
let $  e _ {1} \dots e _ {m _ {n}  } $
 
be an ordered system of monomials of degree $  \leq  n $
 
and let $  x  ^ {(} n) $
 
be a point in $  E ^ {m _ {n} } \subset  \mathbf C ^ {m _ {n} } $.  
 
Then $  V ( x  ^ {(} n) ) $
 
is defined as $  \mathop{\rm det} [ e _ {i} ( x _ {j} )] $,  
 
$  x  ^ {n} = ( x _ {1} \dots x _ {m _ {n}  } ) $,  
 
and $  d _ {n} ( E) = ( \max _ {x  ^ {(}  n) \in E ^ {m _ {n} } } V( x  ^ {(} n) ) ) ^ {1/ \mathop{\rm deg}  V( x  ^ {n} ) } $.  
 
The related capacity is the one associated to the complex Monge–Ampère operator.
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.E. Kleinman,  "On a unified characterization of capacity"  J. Král (ed.)  J. Lukeš (ed.)  J. Veselý (ed.) , ''Potential theory. Survey and problems (Prague, 1987)'' , ''Lect. notes in math.'' , '''1344''' , Plenum  (1988)  pp. 103–120</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Klimek,  "Pluripotential theory" , Cambridge Univ. Press  (1991)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Siciak,  "Extremal plurisubharmonic functions and capacities in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670159.png" />" , ''Sophia Kokyuroku in Math.'' , '''14''' , Dept. Math. Sophia Univ. Tokyo  (1982)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.E. Kleinman,  "On a unified characterization of capacity"  J. Král (ed.)  J. Lukeš (ed.)  J. Veselý (ed.) , ''Potential theory. Survey and problems (Prague, 1987)'' , ''Lect. notes in math.'' , '''1344''' , Plenum  (1988)  pp. 103–120</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Klimek,  "Pluripotential theory" , Cambridge Univ. Press  (1991)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Siciak,  "Extremal plurisubharmonic functions and capacities in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t093670159.png" />" , ''Sophia Kokyuroku in Math.'' , '''14''' , Dept. Math. Sophia Univ. Tokyo  (1982)</TD></TR></table>

Revision as of 14:53, 7 June 2020

of a compact set

A characteristic of a compact set in the complex plane serving as a geometric interpretation of the capacity of this set. Let be a compact infinite set in the -plane. Then the quantity

(1)

where is the Euclidean distance between and , is called the -th diameter of . In particular, is the Euclidean diameter of . The points of for which the maximum on the right-hand side of (1) is realized are called the Fekete points (or Vandermonde nodes) for . The sequence of quantities is non-increasing: , so that the following limit exists:

The quantity is also called the transfinite diameter of . If is a finite set, then one has . The transfinite diameter , the Chebyshev constant and the capacity are equal:

The transfinite diameter of a set has the following properties: 1) if , then ; 2) if is a fixed complex number and , then ; 3) if is the set of points at a distance at most from , then ; 4) if is the set of roots of the equation

where is a given polynomial and runs through , then . The transfinite diameter of a circle is equal to its radius; the transfinite diameter of a line segment is equal to a quarter of its length.

Let be a bounded continuum and let be the component of the complement of with respect to the extended plane that contains the point . Then the transfinite diameter of is equal to the conformal radius of (with respect to ; cf. Conformal radius of a domain).

The corresponding notions for sets in the hyperbolic and elliptic planes are defined as follows. Consider as a model of the hyperbolic plane the disc with metric defined by the line element and suppose that is a closed infinite set in . Then the -th hyperbolic diameter of is defined by (1) in which

(2)

is the hyperbolic pseudo-distance between and , that is, , where is the hyperbolic distance between and in (see Hyperbolic metric). As in the Euclidean case, the sequence is non-increasing and the following limit exists:

It is called the hyperbolic transfinite diameter of . Define the hyperbolic Chebyshev constant and the hyperbolic capacity of via the hyperbolic pseudo-distance (2) between the points of by analogy with the Chebyshev constant and capacity defined via the Euclidean distance between points of the -plane. Then one obtains

The hyperbolic transfinite diameter is invariant under the full group of hyperbolic isometries. If is a continuum, then there is a simple relationship between the hyperbolic transfinite diameter and conformal mapping. Namely, let be a continuum in the disc such that the complement of with respect to this disc is conformally equivalent to the annulus , . Then .

Consider as a model of the elliptic plane the extended complex -plane with the metric of its Riemann sphere of diameter 1, tangent to the -plane at the point , that is, the metric defined by the line element

furthermore, let the points and be identified; these correspond to diametrically-opposite points of under stereographic projection of the extended -plane onto . Let be a closed infinite set in the extended -plane, , where . Then the -th elliptic diameter of is defined by (1), in which

(3)

is the elliptic pseudo-distance between points and of , that is, , where () is the elliptic distance between and . As in the previous cases, the sequence is non-increasing and the following limit, called the elliptic transfinite diameter of , exists:

Define the elliptic Chebyshev constant and the elliptic capacity of via the elliptic pseudo-distance (3). Then one obtains:

The elliptic transfinite diameter is invariant under the group of fractional-linear transformations

of the extended -plane onto itself, supplemented by the group of reflections in the elliptic lines. The first of these groups is isomorphic to the group of reflections of about planes passing through its centre. With this definition the elliptic transfinite diameter of is related to conformal mapping in the following way. If is a continuum in the extended -plane, , and the complement of with respect to the extended plane is conformally equivalent to the annulus , , then .

The notion of the transfinite diameter can be generalized to compacta in a multi-dimensional Euclidean space , , and is connected with potential theory. Let, for points ,

be a fundamental solution of the Laplace equation, and for the set of points , let

Then for one has

while for it is expedient (see [4]) to take

References

[1] M. Fekete, "Ueber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten" Math. Z. , 17 (1923) pp. 228–249
[2] G. Pólya, G. Szegö, "Ueber den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen" J. Reine Angew. Math. , 165 (1931) pp. 4–49
[3] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
[4] L. Carleson, "Selected problems on exceptional sets" , v. Nostrand (1967)
[5] V.I. Smirnov, A.N. Lebedev, "Functions of a complex variable" , M.I.T. (1968) (Translated from Russian)
[6] M. Tsuji, "Potential theory in modern function theory" , Chelsea, reprint (1959)
[7] R. Kühnau, "Geometrie der konformen Abbildung auf der hyperbolischen und der elliptischen Ebene" , Deutsch. Verlag Wissenschaft. (1974)


Comments

Outer radius is another term for transfinite diameter. See [a1] for a survey on connections between transfinite diameter, Robin constant and capacity in or .

The notion of transfinite diameter also makes good sense in several complex variables, if interpreted in the correct way: (1) with is a root of a Vandermondian determinant:

where

In , let be an ordered system of monomials of degree and let be a point in . Then is defined as , , and . The related capacity is the one associated to the complex Monge–Ampère operator.

References

[a1] R.E. Kleinman, "On a unified characterization of capacity" J. Král (ed.) J. Lukeš (ed.) J. Veselý (ed.) , Potential theory. Survey and problems (Prague, 1987) , Lect. notes in math. , 1344 , Plenum (1988) pp. 103–120
[a2] M. Klimek, "Pluripotential theory" , Cambridge Univ. Press (1991)
[a3] J. Siciak, "Extremal plurisubharmonic functions and capacities in " , Sophia Kokyuroku in Math. , 14 , Dept. Math. Sophia Univ. Tokyo (1982)
How to Cite This Entry:
Transfinite diameter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transfinite_diameter&oldid=49476
This article was adapted from an original article by G.V. Kuz'minaE.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article