Namespaces
Variants
Actions

Trace of a square matrix

From Encyclopedia of Mathematics
Revision as of 17:53, 13 December 2015 by Richard Pinch (talk | contribs) (→‎Comments: trace of an endomorphism, cite Bourbaki)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 15A15 [MSN][ZBL] $ \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\Tr}{\mathop{\mathrm{Tr}}} \newcommand{\Sp}{\mathop{\mathrm{Sp}}} \newcommand{\End}{\mathop{\mathrm{End}}} $

The sum of the entries on the main diagonal of this matrix. The trace of a matrix $A = [a_{ij}]$ is denoted by $\tr A$, $\Tr A$ or $\Sp A$: $$ \tr A = \sum_{i=0}^n a_{ii} $$ Let $A$ be a square matrix of order $n$ over a field $k$. The trace of $A$ coincides with the sum of the roots of the characteristic polynomial of $A$. If $k$ is a field of characteristic 0, then the $n$ traces $\tr A, \ldots \tr A^n$ uniquely determine the characteristic polynomial of $A$. In particular, $A$ is nilpotent if and only if $\tr A^m = 0$ for all $m=1,\ldots,n$.

If $A$ and $B$ are square matrices of the same order over $k$, and $\alpha,\beta \in k$, then $$ \tr(\alpha A + \beta B) = \alpha \tr A + \beta \tr B, \quad \tr AB = \tr BA, $$ while if $\det B \neq 0$, $$\label{eq:a1} \tr(BAB^{-1}) = \tr A. $$ The trace of the tensor (Kronecker) product of square matrices over a field is equal to the product of the traces of the factors.

The trace of a product of matrices $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times n}$ with a resulting square matrix is equal to the sum over all components of a hadamard product of $A$ and $B^T$: $$ \tr(AB) = \sum_{i=1}^n \sum_{j=1}^n (A \circ B^T)_{i,j}. $$

References

[Co] P.M. Cohn, "Algebra", 1, Wiley (1982) pp. 336
[Ga] F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices", 1, Chelsea, reprint (1959) (Translated from Russian)

Comment

The trace of an endomorphism $\alpha$ of a finite-dimensional vector space $V$ over the field $k$ may be defined as the trace of any matrix representing it with respect to a given basis for $V$. Since the trace is invariant for similar matrices (equation 1), this is well-defined. It may be defined in a basis-independent way from the sequence $$ \End(V) \leftrightarrow V^* \otimes V \rightarrow k \ . $$

References

[Bo] N. Bourbaki, "Algebra", 1, Chap.1-3, Springer (1989) §4.3
How to Cite This Entry:
Trace of a square matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trace_of_a_square_matrix&oldid=36914
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article