Namespaces
Variants
Actions

Trace

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 12F [MSN][ZBL]

The mapping $\mathrm{Tr}_{K/k}$ of a field $K$ into a field $k$ (where $K$ is a finite extension of $k$) that sends an element $\alpha \in K$ to the trace of the matrix (cf. Trace of a square matrix) of the $k$-linear mapping $K \rightarrow K$ sending $\beta \in K$ to $\alpha \beta$. $\mathrm{Tr}_{K/k}$ is a homomorphism of the additive groups $K^+ \rightarrow k^+$.

If $K/k$ is a separable extension, then $$ \mathrm{Tr}_{K/k}(\alpha) = \sum_i \sigma_i(\alpha) $$ where the sum is taken over all $k$-isomorphisms $\sigma_i$ of $K$ into an algebraic closure $\bar k$ of $k$. The trace mapping is transitive, that is, if $L/K$ and $K/k$ are finite extensions, then for any $\alpha \in L$, $$ \mathrm{Tr}_{L/k}(\alpha) = \mathrm{Tr}_{K/k}(\mathrm{Tr}_{L/K}(\alpha)) \ . $$

Comments

Especially in older mathematical literature, instead of $\mathrm{Tr}_{K/k}$ one finds $\mathrm{Sp}_{K/k}$ (from the German "Spur" ) as notation for this mapping.

References

[a1] N. Jacobson, "Lectures in abstract algebra" , 3. Theory of fields and Galois theory , Springer, reprint (1975)
[a2] N. Jacobson, "Basic algebra" , 1 , Freeman (1985)
[a3] S. Lang, "Algebra" , Addison-Wesley (1965)
How to Cite This Entry:
Trace. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trace&oldid=35826
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article