Namespaces
Variants
Actions

Torus knot

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 57K [MSN][ZBL]

of type $ ( p, q) $

A curve in $ \mathbf R ^ {3} $ that in cylindrical coordinates $ r, z, \theta $ is given by the equations

$$ r = 2 + \cos t,\ \ z = \sin t,\ \ \theta = { \frac{pt }{q} } , $$

where $ t \in [ 0, 2 \pi q] $. Here $ p $ and $ q $ are coprime natural numbers. The torus knot lies on the surface of the unknotted torus $ ( r - 2) ^ {2} + z ^ {2} = 1 $, intersecting the meridians of the torus at $ p $ points and the parallels at $ q $ points. The torus knots of types $ ( p, 1) $ and $ ( 1, q) $ are trivial. The simplest non-trivial torus knot is the trefoil (Fig. a), which is of type $ ( 2, 3) $. The group of the torus knot of type $ ( p, q) $ has a presentation $ < a, b $: $ a ^ {p} = b ^ {q} > $, and the Alexander polynomial is given by

$$ ( t ^ {pq} - 1) ( t - 1) ( t ^ {p} - 1) ^ {-} 1 ( t ^ {q} - 1) ^ {-} 1 . $$

All torus knots are Neuwirth knots (cf. Neuwirth knot). The genus of a torus knot is $ ( p - 1) ( q - 1)/2 $.

A second construction of a torus knot uses the singularity at the origin of the algebraic hypersurface

$$ V = \ \{ {( z _ {1} , z _ {2} ) \in \mathbf C ^ {2} } : { z _ {1} ^ {p} + z _ {2} ^ {q} = 0 } \} . $$

If $ p $ and $ q $ are coprime, then the intersection of $ V $ with a sufficiently small sphere $ S ^ {3} \subset \mathbf C ^ {2} $ is a knot in $ S ^ {3} $ equivalent to the torus knot of type $ ( p, q) $. In the case when $ p $ and $ q $ are not coprime, this intersection also lies on an unknotted torus $ T ^ {2} \subset S ^ {3} $, but consists of several components. The link so obtained is called the torus link of type $ ( p, q) $( cf. Fig. b, where $ p = 3 $, $ q = 6 $).

Figure: t093360a

Figure: t093360b

Comments

See also Knot theory.

References

[1] R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)
[2] J. Milnor, "Singular points of complex hypersurfaces" , Princeton Univ. Press (1968)
[a1] D. Rolfsen, "Knots and links" , Publish or Perish (1976)
How to Cite This Entry:
Torus knot. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Torus_knot&oldid=52865
This article was adapted from an original article by M.Sh. Farber (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article