Namespaces
Variants
Actions

Difference between revisions of "Tonelli theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
t0930001.png
 +
$#A+1 = 22 n = 0
 +
$#C+1 = 22 : ~/encyclopedia/old_files/data/T093/T.0903000 Tonelli theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''on the finiteness of the area of a continuous surface given by an explicit equation''
 
''on the finiteness of the area of a continuous surface given by an explicit equation''
  
Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930001.png" /> is a real-valued function defined on a rectangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930002.png" />; then
+
Suppose that $  f $
 +
is a real-valued function defined on a rectangle $  D _ {0} = [ a, b] \times [ c, d] $;  
 +
then
  
a) the continuous surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930003.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930004.png" />, has finite area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930005.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930006.png" /> has finite [[Tonelli plane variation|Tonelli plane variation]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930007.png" />;
+
a) the continuous surface $  z = f ( x, y) $,
 +
$  ( x, y) \in D _ {0} $,  
 +
has finite area $  S ( f, D _ {0} ) $
 +
if and only if $  f $
 +
has finite [[Tonelli plane variation|Tonelli plane variation]] on $  D _ {0} $;
  
 
b) if the assertion in a) holds, then
 
b) if the assertion in a) holds, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930008.png" /></td> </tr></table>
+
$$
 +
S ( f, D _ {0} )  \geq  \
 +
{\int\limits \int\limits } _ {D _ {0} }
 +
\left [ 1 + \left (
 +
 
 +
\frac{\partial  f }{\partial  x }
 +
 
 +
\right )  ^ {2} + \left (
 +
 
 +
\frac{\partial  f }{\partial  y }
 +
 
 +
\right )  ^ {2} \right ]  ^ {1/2} \
 +
dx  dy  \equiv  L ( f, D _ {0} ),
 +
$$
  
 
where the area
 
where the area
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t0930009.png" /></td> </tr></table>
+
$$
 +
S ( D)  \equiv  S ( f, D),\ \
 +
= [ \alpha , \beta ] \times [ \gamma , \delta ]  \subseteq  D _ {0} ,
 +
$$
 +
 
 +
is a continuous additive function of rectangles  $  D \subseteq D _ {0} $,
 +
and for almost-every point  $  ( x, y) \in D _ {0} $
 +
one has the equation
 +
 
 +
$$
 +
S  ^  \prime  ( x, y)  \equiv \
 +
\left [ 1 + \left (
 +
 
 +
\frac{\partial  f }{\partial  x }
 +
 
 +
\right )  ^ {2} + \left (
  
is a continuous additive function of rectangles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300010.png" />, and for almost-every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300011.png" /> one has the equation
+
\frac{\partial  f }{\partial  y }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300012.png" /></td> </tr></table>
+
\right )  ^ {2} \right ]  ^ {1/2} ;
 +
$$
  
c) the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300013.png" /> holds if and only if the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300014.png" /> is absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300015.png" />, and this holds if and only if the area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300016.png" /> is an absolutely-continuous function of rectangles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300017.png" />.
+
c) the equation $  S ( f, D _ {0} ) = L ( f, D _ {0} ) $
 +
holds if and only if the function $  f $
 +
is absolutely continuous on $  D _ {0} $,  
 +
and this holds if and only if the area $  S ( f, D) $
 +
is an absolutely-continuous function of rectangles $  D \subseteq D _ {0} $.
  
 
This theorem was proved by L. Tonelli (cf. [[#References|[1]]]–[[#References|[3]]], and also [[#References|[4]]]), although assertion a) for all surfaces defined parametrically was established by S. Banach [[#References|[5]]] (in a somewhat different terminology).
 
This theorem was proved by L. Tonelli (cf. [[#References|[1]]]–[[#References|[3]]], and also [[#References|[4]]]), although assertion a) for all surfaces defined parametrically was established by S. Banach [[#References|[5]]] (in a somewhat different terminology).
Line 23: Line 74:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Tonelli,  "Sur la quadrature des surfaces"  ''C.R. Acad. Sci. Paris'' , '''182'''  (1926)  pp. 1198–2000</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Tonelli,  "Sulla quadratura delle superficie"  ''Atti Accad. Naz. Lincei'' , '''3'''  (1926)  pp. 357–363; 445–450; 633–658</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Tonelli,  "Su un polinomio d'approssimazione e l'area di una superficie"  ''Atti Accad. Naz. Lincei'' , '''5'''  (1927)  pp. 313–318</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Saks,  "Theory of the integral" , Hafner  (1952)  (Translated from French)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Banach,  "Sur les lignes rectifiables et les surfaces dont l'aire est finie"  ''Fund. Math.'' , '''7'''  (1925)  pp. 225–236</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Tonelli,  "Sur la quadrature des surfaces"  ''C.R. Acad. Sci. Paris'' , '''182'''  (1926)  pp. 1198–2000</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Tonelli,  "Sulla quadratura delle superficie"  ''Atti Accad. Naz. Lincei'' , '''3'''  (1926)  pp. 357–363; 445–450; 633–658</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Tonelli,  "Su un polinomio d'approssimazione e l'area di una superficie"  ''Atti Accad. Naz. Lincei'' , '''5'''  (1927)  pp. 313–318</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Saks,  "Theory of the integral" , Hafner  (1952)  (Translated from French)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Banach,  "Sur les lignes rectifiables et les surfaces dont l'aire est finie"  ''Fund. Math.'' , '''7'''  (1925)  pp. 225–236</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300018.png" /> is said to be continuous if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300019.png" /> is continuous; the area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300020.png" /> is the Lebesgue area (see [[Area|Area]]), i.e. roughly speaking the liminf of the values of the areas of the polyhedra inscribed in the surface when these polyhedra uniformly tend to the surface. The definition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300021.png" /> (a [[Surface integral|surface integral]]) makes sense if the partial derivatives are defined almost-everywhere; this is the case whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093000/t09300022.png" /> is absolutely continuous. Tonelli's theorem is the culmination of the 19th century style attempts to grasp the concept of area as it had been done for the concept of length. For modern work in this field see [[Area|Area]].
+
The surface $  z= f( x, y) $
 +
is said to be continuous if $  f $
 +
is continuous; the area $  S( f, D _ {0} ) $
 +
is the Lebesgue area (see [[Area|Area]]), i.e. roughly speaking the liminf of the values of the areas of the polyhedra inscribed in the surface when these polyhedra uniformly tend to the surface. The definition of $  L( f, D _ {0} ) $(
 +
a [[Surface integral|surface integral]]) makes sense if the partial derivatives are defined almost-everywhere; this is the case whenever $  f $
 +
is absolutely continuous. Tonelli's theorem is the culmination of the 19th century style attempts to grasp the concept of area as it had been done for the concept of length. For modern work in this field see [[Area|Area]].

Latest revision as of 08:25, 6 June 2020


on the finiteness of the area of a continuous surface given by an explicit equation

Suppose that $ f $ is a real-valued function defined on a rectangle $ D _ {0} = [ a, b] \times [ c, d] $; then

a) the continuous surface $ z = f ( x, y) $, $ ( x, y) \in D _ {0} $, has finite area $ S ( f, D _ {0} ) $ if and only if $ f $ has finite Tonelli plane variation on $ D _ {0} $;

b) if the assertion in a) holds, then

$$ S ( f, D _ {0} ) \geq \ {\int\limits \int\limits } _ {D _ {0} } \left [ 1 + \left ( \frac{\partial f }{\partial x } \right ) ^ {2} + \left ( \frac{\partial f }{\partial y } \right ) ^ {2} \right ] ^ {1/2} \ dx dy \equiv L ( f, D _ {0} ), $$

where the area

$$ S ( D) \equiv S ( f, D),\ \ D = [ \alpha , \beta ] \times [ \gamma , \delta ] \subseteq D _ {0} , $$

is a continuous additive function of rectangles $ D \subseteq D _ {0} $, and for almost-every point $ ( x, y) \in D _ {0} $ one has the equation

$$ S ^ \prime ( x, y) \equiv \ \left [ 1 + \left ( \frac{\partial f }{\partial x } \right ) ^ {2} + \left ( \frac{\partial f }{\partial y } \right ) ^ {2} \right ] ^ {1/2} ; $$

c) the equation $ S ( f, D _ {0} ) = L ( f, D _ {0} ) $ holds if and only if the function $ f $ is absolutely continuous on $ D _ {0} $, and this holds if and only if the area $ S ( f, D) $ is an absolutely-continuous function of rectangles $ D \subseteq D _ {0} $.

This theorem was proved by L. Tonelli (cf. [1][3], and also [4]), although assertion a) for all surfaces defined parametrically was established by S. Banach [5] (in a somewhat different terminology).

References

[1] L. Tonelli, "Sur la quadrature des surfaces" C.R. Acad. Sci. Paris , 182 (1926) pp. 1198–2000
[2] L. Tonelli, "Sulla quadratura delle superficie" Atti Accad. Naz. Lincei , 3 (1926) pp. 357–363; 445–450; 633–658
[3] L. Tonelli, "Su un polinomio d'approssimazione e l'area di una superficie" Atti Accad. Naz. Lincei , 5 (1927) pp. 313–318
[4] S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)
[5] S. Banach, "Sur les lignes rectifiables et les surfaces dont l'aire est finie" Fund. Math. , 7 (1925) pp. 225–236

Comments

The surface $ z= f( x, y) $ is said to be continuous if $ f $ is continuous; the area $ S( f, D _ {0} ) $ is the Lebesgue area (see Area), i.e. roughly speaking the liminf of the values of the areas of the polyhedra inscribed in the surface when these polyhedra uniformly tend to the surface. The definition of $ L( f, D _ {0} ) $( a surface integral) makes sense if the partial derivatives are defined almost-everywhere; this is the case whenever $ f $ is absolutely continuous. Tonelli's theorem is the culmination of the 19th century style attempts to grasp the concept of area as it had been done for the concept of length. For modern work in this field see Area.

How to Cite This Entry:
Tonelli theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tonelli_theorem&oldid=17108
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article