Namespaces
Variants
Actions

Thom isomorphism

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An isomorphism between the (generalized) (co)homology groups of the base space of a vector (sphere) bundle $ \xi $ and the (co)homology groups of its Thom space $ T ( \xi ) $.

Suppose the $ n $- dimensional vector bundle $ \xi $ over a finite cell complex $ X $ is oriented in some multiplicative generalized cohomology theory $ E ^ {*} $( cf. Generalized cohomology theories), that is, there exists a Thom class $ u \in \widetilde{E} {} ^ {*} ( T \xi ) $. Then $ \widetilde{E} {} ^ {*} ( T \xi ) $ is an $ E ^ {*} ( X) $- module, and the homomorphism $ \phi : E ^ {i} ( X) \rightarrow \widetilde{E} {} ^ {i + n } ( T \xi ) $, given by multiplication by the Thom class, is an isomorphism, called the Thom isomorphism (or Thom–Dold isomorphism).

There is a dually-defined isomorphism $ E _ {i} ( X) \rightarrow \widetilde{E} _ {i + n } ( T \xi ) $.

In the case where $ E ^ {*} $ is the classical cohomology theory $ H ^ {*} $, the isomorphism is described in [1], and it was established for an arbitrary theory $ E ^ {*} $ in [2]. Moreover, if $ \xi $ is not oriented in the integral cohomology theory $ H ^ {*} $, then there is an isomorphism $ H ^ {k} ( X) \cong H ^ {k + n } ( T \xi ; \{ Z \} ) $, where the right-hand side is the cohomology group with coefficients in the local system of groups $ \{ Z \} $. More generally, if $ \xi $ is non-oriented in the cohomology theory $ E ^ {*} $, there is an isomorphism which generalizes both the Thom isomorphism described above and the Thom–Dold isomorphism for $ E ^ {*} $- oriented bundles [3].

References

[1] R. Thom, "Quelques propriétés globales des variétés différentiables" Comm. Math. Helv. , 28 (1954) pp. 17–86
[2] A. Dold, "Relations between ordinary and extraordinary homology" , Colloq. Algebraic Topology, August 1–10, 1962 , Inst. Math. Aarhus Univ. (1962) pp. 2–9
[3] Yu.B. Rudyak, "On the Thom–Dold isomorphism for nonorientable bundles" Soviet Math. Dokl. , 22 (1980) pp. 842–844 Dokl. Akad. Nauk. SSSR , 255 : 6 (1980) pp. 1323–1325
[4] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975)
How to Cite This Entry:
Thom isomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thom_isomorphism&oldid=48970
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article