Namespaces
Variants
Actions

Thom class

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An element in the (generalized) cohomology group of a Thom space, generating it as a module over the cohomology ring of the base space. For a multiplicative generalized cohomology theory (cf. Generalized cohomology theories) $ E ^ {*} $, let $ \gamma _ {n} \in \widetilde{E} {} ^ {n} ( S ^ {n} ) $ be the image of $ 1 \in \widetilde{E} {} ^ {0} ( S ^ {0} ) $ under the $ n $-fold suspension isomorphism $ \widetilde{E} {} ^ {0} ( S ^ {0} ) \cong \widetilde{E} {} ^ {n} ( S ^ {n} ) $. Let $ \xi $ be an $ n $-dimensional vector bundle over a path-connected finite cell complex $ X $, and let $ j: S ^ {n} \rightarrow T ( \xi ) $ be the corresponding inclusion into the Thom space. An element $ u \in \widetilde{E} {} ^ {n} ( T) $ is called a Thom class (or orientation) of the bundle $ \xi $ if $ j ^ {*} u = \epsilon \gamma _ {n} $, with $ \epsilon $ invertible in $ \widetilde{E} {} ^ {0} ( S ^ {0} ) $. A bundle need not have a Thom class. A bundle with a Thom class (in $ E ^ {*} $) is called $ E $-orientable, and a bundle with a fixed Thom class is $ E $-oriented. The number of Thom classes of an $ E $-orientable bundle over $ X $ is equal to the number of elements of the group $ ( \widetilde{E} {} ^ {0} ( S ^ {0} )) ^ {*} \times \widetilde{E} {} ^ {0} ( X) $. Multiplication by a Thom class gives a Thom isomorphism.

Comments

For a (topological) manifold with or without boundary $ ( M , \partial M ) $, a Thom class is a Thom class for its tangent (micro) bundle. Given a Thom class $ t \in E ^ {n} ( M \times M , M \times M \setminus \Delta ) $, there are isomorphisms $ \varphi _ {t} : E _ {r} ( M \setminus B, M \setminus A) \widetilde \rightarrow E ^ {n- r} ( A, B) $ (Alexander duality), $ E _ {r} ( A, B) \widetilde \rightarrow E ^ {n- r} ( M \setminus A, M \setminus B ) $, $ E _ {r} ( M, \partial M ) \widetilde \rightarrow E ^ {n- r} ( M) $ (Lefschetz duality) and $ E _ {r} ( M) \widetilde \rightarrow E ^ {n- r} ( M, \partial M ) $, $ E _ {r} ( M) \rightarrow E ^ {n- r} ( M) $ (Poincaré duality), where $ ( M , \partial M ) $ is a compact triangulable manifold and $ B \subset A \subset M \setminus \partial M $ are compact subpolyhedra, cf. [a1], Chapt. 14, for more details.

An element $ z \in E _ {n} ( M, \partial M) $ is called a fundamental class if for every $ x \in M \setminus \partial M $ one has that $ j _ {*} ( z) \in E _ {n} ( M, M \setminus \{ x \} ) $ ($ \cong E _ {n} ( U, U \setminus \{ x \} ) \simeq E _ {n} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus \{ 0 \} ) $) is a generator of $ E _ {*} ( M, M \setminus \{ x \} ) $ as a module over $ E _ {*} ( pt) $. (Here $ j $ is the inclusion $ ( M, \partial M ) \rightarrow ( M, M \setminus \{ x \} ) $.) For the case of ordinary homology, cf. Fundamental class. The relation between a fundamental class and a Thom class is given by the result that if $ M $ is a compact triangulable $ n $-manifold with Thom class $ t $, then there is a unique fundamental class $ z \in E _ {n} ( M, \partial M ) $ such that $ \varphi _ {t} : E _ {n} ( M, \partial M ) \widetilde \rightarrow E ^ {0} ( M \setminus \partial M ) $ takes $ 2 $ to $ 1 $, cf. [a1], Prop. 14.17. Using this the Lefschetz and Poincaré duality isomorphisms defined by the Thom class $ t $ (which essentially are defined by a slant product with $ t $) are given by a cap product with $ z $.

References

[a1] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapt. 2
How to Cite This Entry:
Thom class. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thom_class&oldid=52018
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article