Namespaces
Variants
Actions

Difference between revisions of "Szegö polynomial"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Szego polynomial to Szegö polynomial over redirect: accented title)
m (gt to >)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 72 formulas, 72 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
The Szegö polynomials form an orthogonal polynomial sequence with respect to the positive definite Hermitian [[Inner product|inner product]]
 
The Szegö polynomials form an orthogonal polynomial sequence with respect to the positive definite Hermitian [[Inner product|inner product]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306501.png" /></td> </tr></table>
+
\begin{equation*} \langle f , g \rangle = \int _ { - \pi } ^ { \pi } f ( e ^ { i \theta }) \overline { g ( e ^ { i \theta } ) } d \mu ( \theta ), \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306502.png" /> is a positive [[Measure|measure]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306503.png" /> (cf. also [[Orthogonal polynomials on a complex domain|Orthogonal polynomials on a complex domain]]). The monic orthogonal Szegö polynomials satisfy a recurrence relation of the form
+
where $\mu$ is a positive [[Measure|measure]] on $[ - \pi , \pi )$ (cf. also [[Orthogonal polynomials on a complex domain|Orthogonal polynomials on a complex domain]]). The monic orthogonal Szegö polynomials satisfy a recurrence relation of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306504.png" /></td> </tr></table>
+
\begin{equation*} \Phi _ { n + 1 } ( z ) = z \Phi _ { n } ( z ) + \rho _ { n + 1 } \Phi _ { n } ^ { * } ( z ), \end{equation*}
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306505.png" />, with initial conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306506.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306507.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306508.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306509.png" />. The parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065010.png" /> is called a reflection coefficient or Schur or Szegö parameter.
+
for $n \geq 0$, with initial conditions $\Phi _ { 0 } = 1$ and $\Phi _ { - 1 } ( z ) = 0$. Here, $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ if $\Phi _ { n } ( z ) = \sum _ { k = 0 } ^ { n } b _ { n k } z ^ { k }$. The parameter $\rho _ { n + 1}  = \Phi _ { n + 1 }  ( 0 )$ is called a reflection coefficient or Schur or Szegö parameter.
  
Szegö's extremum problem is to find <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065011.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065012.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065013.png" />-norm and where the minimum is taken over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065014.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065015.png" /> being the open unit disc) satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065016.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065017.png" /> is restricted to be a polynomial of degree at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065018.png" />, then a solution is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065019.png" />.
+
Szegö's extremum problem is to find $\delta _ { \mu } = \operatorname { min } _ { H } \| H \| _ { \mu }$, with $\| H \| _ { \mu }$ the $L ^ { 2 } ( \mu )$-norm and where the minimum is taken over all $H \in H ^ { 2 } ( \mu , {\bf D} )$ ($\mathbf D$ being the open unit disc) satisfying $H ( 0 ) = 1$. If $H$ is restricted to be a polynomial of degree at most $n$, then a solution is given by $H = \Phi _ { n } ^ { * }$.
  
Szegö's theory involves the solution of this extremum problem and related questions such as the asymptotics of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065020.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065021.png" />. The essential result is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065022.png" /> equals the [[Geometric mean|geometric mean]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065023.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065024.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065025.png" />. Szegö's condition is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065026.png" />, and it is equivalent with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065027.png" /> and with the fact that the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065028.png" /> is not complete in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065029.png" /> (cf. also [[Complete system|Complete system]]).
+
Szegö's theory involves the solution of this extremum problem and related questions such as the asymptotics of $\Phi _ { n } ^ { * }$ as $n \rightarrow \infty$. The essential result is that $\delta _ { \mu }$ equals the [[Geometric mean|geometric mean]] of $\mu ^ { \prime }$, i.e., $\delta _ { \mu } = \operatorname { exp } \{ c _ { \mu } / ( 4 \pi ) \}$ with $c _ { \mu } = \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) d \theta$. Szegö's condition is that $ { c } _ { \mu } > - \infty$, and it is equivalent with $\delta _ { \mu } > 0$ and with the fact that the system $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ is not complete in $H ^ { 2 } ( \mu )$ (cf. also [[Complete system|Complete system]]).
  
 
Defining the orthonormal Szegö polynomials
 
Defining the orthonormal Szegö polynomials
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065030.png" /></td> </tr></table>
+
\begin{equation*} \phi _ { n } ( z ) = \frac { \Phi _ { n } ( z ) } { \| \Phi _ { n } \| _ { \mu } }, \end{equation*}
  
 
then if Szegö's condition holds one has
 
then if Szegö's condition holds one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065031.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { lim } _ { n \rightarrow \infty } \phi _ { n } ^ { * } ( z ) = D _ { \mu } ( z ) ^ { - 1 }, \end{equation*}
  
 
where the Szegö function is defined as
 
where the Szegö function is defined as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065032.png" /></td> </tr></table>
+
\begin{equation*} D _ { \mu } ( z ) = \operatorname { exp } \left\{ \frac { 1 } { 4 \pi } \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) R ( e ^ { i \theta } , z ) d \theta \right\}, \end{equation*}
  
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065033.png" /> the Riesz–Herglotz kernel (cf. also [[Carathéodory class|Carathéodory class]]). The convergence holds uniformly on compact subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065034.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065035.png" /> is an outer function (cf. [[Hardy classes|Hardy classes]]) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065036.png" /> with radial limit to the boundary, and a.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065037.png" />. Therefore it is also called a spectral factor of the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065038.png" />. Other asymptotic formulas were obtained under much weaker conditions, such as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065039.png" /> a.e. or the Carleman conditions for the moments of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065040.png" />.
+
with $R ( t , z ) = ( t + z ) / ( t - z )$ the Riesz–Herglotz kernel (cf. also [[Carathéodory class|Carathéodory class]]). The convergence holds uniformly on compact subsets $\mathbf D$. The function $D$ is an outer function (cf. [[Hardy classes|Hardy classes]]) in $\mathbf D$ with radial limit to the boundary, and a.e. $| D _ { \mu } ( e ^ { i \theta } ) | ^ { 2 } = \mu ^ { \prime } ( \theta )$. Therefore it is also called a spectral factor of the weight function $\mu ^ { \prime }$. Other asymptotic formulas were obtained under much weaker conditions, such as $\mu ^ { \prime } > 0$ a.e. or the Carleman conditions for the moments of $\mu$.
  
Szegö polynomials of the second kind are defined inductively as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065041.png" /> and, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065042.png" />,
+
Szegö polynomials of the second kind are defined inductively as $\psi _{0} = 1$ and, for $n \geq 1$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065043.png" /></td> </tr></table>
+
\begin{equation*} \psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta ). \end{equation*}
  
The rational functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065044.png" /> interpolate the Riesz–Herglotz transform
+
The rational functions $F _ { n } = - \psi _ { n } / \phi _ { n }$ interpolate the Riesz–Herglotz transform
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065045.png" /></td> </tr></table>
+
\begin{equation*} F _ { \mu } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) d \mu ( \theta ) \end{equation*}
  
at zero and infinity. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065046.png" /> is a Carathéodory or positive real function because it is analytic in the open unit disc and has positive real part there.
+
at zero and infinity. $F _ { \mu }$ is a Carathéodory or positive real function because it is analytic in the open unit disc and has positive real part there.
  
The [[Cayley transform|Cayley transform]] gives a one-to-one correspondence between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065047.png" /> and a Schur function (cf. also [[Schur functions in complex function theory|Schur functions in complex function theory]]), namely
+
The [[Cayley transform|Cayley transform]] gives a one-to-one correspondence between $F _ { \mu }$ and a Schur function (cf. also [[Schur functions in complex function theory|Schur functions in complex function theory]]), namely
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065048.png" /></td> </tr></table>
+
\begin{equation*} S _ { \mu } ( z ) = \frac { F _ { \mu } ( z ) - F _ { \mu } ( 0 ) } { F _ { \mu } ( z ) + F _ { \mu } ( 0 ) }. \end{equation*}
  
A Schur function is analytic and its modulus is bounded by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065049.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065050.png" />. I. Schur developed a continued-fraction-like algorithm to extract the reflection coefficients from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065051.png" />. It is based on the recursive application of the lemma saying that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065052.png" /> is a Schur function if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065053.png" /> and
+
A Schur function is analytic and its modulus is bounded by $1$ in $\mathbf D$. I. Schur developed a continued-fraction-like algorithm to extract the reflection coefficients from $S _ { \mu }$. It is based on the recursive application of the lemma saying that $S _ { k }$ is a Schur function if and only if $S _ { k } ( 0 ) \in \mathbf{D}$ and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065054.png" /></td> </tr></table>
+
\begin{equation*} S _ { k + 1 } ( z ) = z ^ { - 1 } \frac { S _ { k } ( z ) - S _ { k } ( 0 ) } { 1 - \overline { S  _ { k } ( 0 ) }S _ { k } ( z ) } \end{equation*}
  
is a Schur function. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065055.png" /> correspond to reflection coefficients associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065056.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065057.png" /> and the successive approximants that are computed for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065058.png" /> are related to the Cayley transforms of the interpolants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065059.png" /> given above. It also follows that there is an infinite sequence of reflection coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065060.png" />, unless <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065061.png" /> is a rational function, i.e. unless <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065062.png" /> is a discrete measure. It also implies that, except for the case of a discrete measure, the Szegö polynomials have all their zeros in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065063.png" />.
+
is a Schur function. The $S _ { k } ( 0 )$ correspond to reflection coefficients associated with $\mu$ if $S _ { 0 } = S _ { \mu }$ and the successive approximants that are computed for $S _ { \mu }$ are related to the Cayley transforms of the interpolants $F _ { n }$ given above. It also follows that there is an infinite sequence of reflection coefficients in $\mathbf D$, unless $S _ { \mu }$ is a rational function, i.e. unless $\mu$ is a discrete measure. It also implies that, except for the case of a discrete measure, the Szegö polynomials have all their zeros in $\mathbf D$.
  
 
All these properties have a physical interpretation and are important for the application of Szegö polynomials in linear prediction, modelling of stochastic processes, scattering and circuit theory, optimal control, etc.
 
All these properties have a physical interpretation and are important for the application of Szegö polynomials in linear prediction, modelling of stochastic processes, scattering and circuit theory, optimal control, etc.
  
The polynomials orthogonal on a circle are of course related to polynomials orthogonal on the real line or on an interval, e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065064.png" />, using an appropriate transformation. Given the polynomials orthogonal for a weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065065.png" /> on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065066.png" />, then the orthogonal polynomials for a rational modification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065067.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065068.png" /> is a polynomial positive on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065069.png" />, can be derived. Bernshtein–Szegö polynomials are orthogonal polynomials for rational modifications of one of the four classical Chebyshev weights on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065070.png" />, i.e. for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065071.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065072.png" />.
+
The polynomials orthogonal on a circle are of course related to polynomials orthogonal on the real line or on an interval, e.g., $I = [ - 1,1 ]$, using an appropriate transformation. Given the polynomials orthogonal for a weight function $w$ on an interval $I$, then the orthogonal polynomials for a rational modification $w / p$, where $p$ is a polynomial positive on $I$, can be derived. Bernshtein–Szegö polynomials are orthogonal polynomials for rational modifications of one of the four classical Chebyshev weights on $I$, i.e. for $w ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ with $\alpha , \beta \in \{ - 1 / 2,1 / 2 \}$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Freud,  "Orthogonal polynomials" , Pergamon  (1971)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Ya. Geronimus,  "Orthogonal polynomials" , Consultants Bureau  (1961)  (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Stahl,  V. Totik,  "General orthogonal polynomials" , ''Encycl. Math. Appl.'' , Cambridge Univ. Press  (1992)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  G. Szegö,  "Orthogonal polynomials" , ''Colloq. Publ.'' , '''33''' , Amer. Math. Soc.  (1967)  (Edition: Third)</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  G. Freud,  "Orthogonal polynomials" , Pergamon  (1971)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  Ya. Geronimus,  "Orthogonal polynomials" , Consultants Bureau  (1961)  (In Russian)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  H. Stahl,  V. Totik,  "General orthogonal polynomials" , ''Encycl. Math. Appl.'' , Cambridge Univ. Press  (1992)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  G. Szegö,  "Orthogonal polynomials" , ''Colloq. Publ.'' , '''33''' , Amer. Math. Soc.  (1967)  (Edition: Third)</td></tr>
 +
</table>

Latest revision as of 10:02, 11 November 2023

The Szegö polynomials form an orthogonal polynomial sequence with respect to the positive definite Hermitian inner product

\begin{equation*} \langle f , g \rangle = \int _ { - \pi } ^ { \pi } f ( e ^ { i \theta }) \overline { g ( e ^ { i \theta } ) } d \mu ( \theta ), \end{equation*}

where $\mu$ is a positive measure on $[ - \pi , \pi )$ (cf. also Orthogonal polynomials on a complex domain). The monic orthogonal Szegö polynomials satisfy a recurrence relation of the form

\begin{equation*} \Phi _ { n + 1 } ( z ) = z \Phi _ { n } ( z ) + \rho _ { n + 1 } \Phi _ { n } ^ { * } ( z ), \end{equation*}

for $n \geq 0$, with initial conditions $\Phi _ { 0 } = 1$ and $\Phi _ { - 1 } ( z ) = 0$. Here, $\Phi _ { n } ^ { * } ( z ) = \sum _ { k = 0 } ^ { n } \overline { b } _ { n k } z ^ { n - k }$ if $\Phi _ { n } ( z ) = \sum _ { k = 0 } ^ { n } b _ { n k } z ^ { k }$. The parameter $\rho _ { n + 1} = \Phi _ { n + 1 } ( 0 )$ is called a reflection coefficient or Schur or Szegö parameter.

Szegö's extremum problem is to find $\delta _ { \mu } = \operatorname { min } _ { H } \| H \| _ { \mu }$, with $\| H \| _ { \mu }$ the $L ^ { 2 } ( \mu )$-norm and where the minimum is taken over all $H \in H ^ { 2 } ( \mu , {\bf D} )$ ($\mathbf D$ being the open unit disc) satisfying $H ( 0 ) = 1$. If $H$ is restricted to be a polynomial of degree at most $n$, then a solution is given by $H = \Phi _ { n } ^ { * }$.

Szegö's theory involves the solution of this extremum problem and related questions such as the asymptotics of $\Phi _ { n } ^ { * }$ as $n \rightarrow \infty$. The essential result is that $\delta _ { \mu }$ equals the geometric mean of $\mu ^ { \prime }$, i.e., $\delta _ { \mu } = \operatorname { exp } \{ c _ { \mu } / ( 4 \pi ) \}$ with $c _ { \mu } = \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) d \theta$. Szegö's condition is that $ { c } _ { \mu } > - \infty$, and it is equivalent with $\delta _ { \mu } > 0$ and with the fact that the system $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ is not complete in $H ^ { 2 } ( \mu )$ (cf. also Complete system).

Defining the orthonormal Szegö polynomials

\begin{equation*} \phi _ { n } ( z ) = \frac { \Phi _ { n } ( z ) } { \| \Phi _ { n } \| _ { \mu } }, \end{equation*}

then if Szegö's condition holds one has

\begin{equation*} \operatorname { lim } _ { n \rightarrow \infty } \phi _ { n } ^ { * } ( z ) = D _ { \mu } ( z ) ^ { - 1 }, \end{equation*}

where the Szegö function is defined as

\begin{equation*} D _ { \mu } ( z ) = \operatorname { exp } \left\{ \frac { 1 } { 4 \pi } \int _ { - \pi } ^ { \pi } \operatorname { log } \mu ^ { \prime } ( \theta ) R ( e ^ { i \theta } , z ) d \theta \right\}, \end{equation*}

with $R ( t , z ) = ( t + z ) / ( t - z )$ the Riesz–Herglotz kernel (cf. also Carathéodory class). The convergence holds uniformly on compact subsets $\mathbf D$. The function $D$ is an outer function (cf. Hardy classes) in $\mathbf D$ with radial limit to the boundary, and a.e. $| D _ { \mu } ( e ^ { i \theta } ) | ^ { 2 } = \mu ^ { \prime } ( \theta )$. Therefore it is also called a spectral factor of the weight function $\mu ^ { \prime }$. Other asymptotic formulas were obtained under much weaker conditions, such as $\mu ^ { \prime } > 0$ a.e. or the Carleman conditions for the moments of $\mu$.

Szegö polynomials of the second kind are defined inductively as $\psi _{0} = 1$ and, for $n \geq 1$,

\begin{equation*} \psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta ). \end{equation*}

The rational functions $F _ { n } = - \psi _ { n } / \phi _ { n }$ interpolate the Riesz–Herglotz transform

\begin{equation*} F _ { \mu } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) d \mu ( \theta ) \end{equation*}

at zero and infinity. $F _ { \mu }$ is a Carathéodory or positive real function because it is analytic in the open unit disc and has positive real part there.

The Cayley transform gives a one-to-one correspondence between $F _ { \mu }$ and a Schur function (cf. also Schur functions in complex function theory), namely

\begin{equation*} S _ { \mu } ( z ) = \frac { F _ { \mu } ( z ) - F _ { \mu } ( 0 ) } { F _ { \mu } ( z ) + F _ { \mu } ( 0 ) }. \end{equation*}

A Schur function is analytic and its modulus is bounded by $1$ in $\mathbf D$. I. Schur developed a continued-fraction-like algorithm to extract the reflection coefficients from $S _ { \mu }$. It is based on the recursive application of the lemma saying that $S _ { k }$ is a Schur function if and only if $S _ { k } ( 0 ) \in \mathbf{D}$ and

\begin{equation*} S _ { k + 1 } ( z ) = z ^ { - 1 } \frac { S _ { k } ( z ) - S _ { k } ( 0 ) } { 1 - \overline { S _ { k } ( 0 ) }S _ { k } ( z ) } \end{equation*}

is a Schur function. The $S _ { k } ( 0 )$ correspond to reflection coefficients associated with $\mu$ if $S _ { 0 } = S _ { \mu }$ and the successive approximants that are computed for $S _ { \mu }$ are related to the Cayley transforms of the interpolants $F _ { n }$ given above. It also follows that there is an infinite sequence of reflection coefficients in $\mathbf D$, unless $S _ { \mu }$ is a rational function, i.e. unless $\mu$ is a discrete measure. It also implies that, except for the case of a discrete measure, the Szegö polynomials have all their zeros in $\mathbf D$.

All these properties have a physical interpretation and are important for the application of Szegö polynomials in linear prediction, modelling of stochastic processes, scattering and circuit theory, optimal control, etc.

The polynomials orthogonal on a circle are of course related to polynomials orthogonal on the real line or on an interval, e.g., $I = [ - 1,1 ]$, using an appropriate transformation. Given the polynomials orthogonal for a weight function $w$ on an interval $I$, then the orthogonal polynomials for a rational modification $w / p$, where $p$ is a polynomial positive on $I$, can be derived. Bernshtein–Szegö polynomials are orthogonal polynomials for rational modifications of one of the four classical Chebyshev weights on $I$, i.e. for $w ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ with $\alpha , \beta \in \{ - 1 / 2,1 / 2 \}$.

References

[a1] G. Freud, "Orthogonal polynomials" , Pergamon (1971)
[a2] Ya. Geronimus, "Orthogonal polynomials" , Consultants Bureau (1961) (In Russian)
[a3] H. Stahl, V. Totik, "General orthogonal polynomials" , Encycl. Math. Appl. , Cambridge Univ. Press (1992)
[a4] G. Szegö, "Orthogonal polynomials" , Colloq. Publ. , 33 , Amer. Math. Soc. (1967) (Edition: Third)
How to Cite This Entry:
Szegö polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Szeg%C3%B6_polynomial&oldid=23540
This article was adapted from an original article by A. Bultheel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article