Namespaces
Variants
Actions

Difference between revisions of "System of parameters of a module over a local ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Automatically changed introduction)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306301.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306302.png" />-dimensional Noetherian ring (cf. also the section  "Dimension of an associative algebra"  in [[Dimension|Dimension]]). Then there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306303.png" />-primary ideal generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306304.png" /> elements (cf., e.g., [[#References|[a1]]], p. 98, [[#References|[a2]]], p. 27). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306305.png" /> generate such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306306.png" />-primary ideal, they are said to be a system of parameters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306307.png" />. The terminology comes from the situation that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306308.png" /> is the local ring of functions at a (singular) point on an [[Algebraic variety|algebraic variety]]. The system of parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s1306309.png" /> is a regular system of parameters if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063010.png" /> generate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063011.png" />, and in that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063012.png" /> is a regular local ring.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
  
More generally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063013.png" /> is a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063014.png" />-module of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063015.png" />, then there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063016.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063017.png" /> is of finite length; in that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063018.png" /> is called a system of parameters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063019.png" />.
+
Out of 30 formulas, 28 were replaced by TEX code.-->
  
The ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063020.png" /> is called a parameter ideal.
+
{{TEX|semi-auto}}{{TEX|part}}
 +
Let $( A , \mathfrak m )$ be an $r$-dimensional Noetherian ring (cf. also the section  "Dimension of an associative algebra" in [[Dimension|Dimension]]). Then there exists an $\mathfrak{m}$-primary ideal generated by $r$ elements (cf., e.g., [[#References|[a1]]], p. 98, [[#References|[a2]]], p. 27). If $x _ { 1 } , \dots , x _ { r }$ generate such an $\mathfrak{m}$-primary ideal, they are said to be a system of parameters of $A$. The terminology comes from the situation that $( A , \mathfrak m )$ is the local ring of functions at a (singular) point on an [[Algebraic variety|algebraic variety]]. The system of parameters $x _ { 1 } , \dots , x _ { r }$ is a regular system of parameters if $x _ { 1 } , \dots , x _ { r }$ generate $\mathfrak{m}$, and in that case $( A , \mathfrak m )$ is a regular local ring.
  
For a semi-local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063021.png" /> with maximal ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063022.png" />, an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063023.png" /> is called an ideal of definition if
+
More generally, if $M$ is a finitely-generated $A$-module of dimension $s$, then there are $y _ { 1 } , \dots , y _ { s } \in \mathfrak { m }$ such that $M / ( y _ { 1 } , \ldots , y _ { s } ) M$ is of finite length; in that case $y _ { 1 } , \dots , y _ { s }$ is called a system of parameters of $M$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063024.png" /></td> </tr></table>
+
The ideal $( y _ { 1 } , \dots , y _ { s } )$ is called a parameter ideal.
  
for some natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063025.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063026.png" /> is of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063027.png" />, then any set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063028.png" /> elements that generates an ideal of definition is a system of parameters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063029.png" />, [[#References|[a3]]], Sect. 4.9.
+
For a semi-local ring $A$ with maximal ideals $m _ { 1 } , \dots , m _ { r }$, an ideal $\frak a$ is called an ideal of definition if
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063024.png"/></td> </tr></table>
 +
 
 +
for some natural number $k$. If $A$ is of dimension $d$, then any set of $d$ elements that generates an ideal of definition is a system of parameters of $A$, [[#References|[a3]]], Sect. 4.9.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Matsumura,  "Commutative ring theory" , Cambridge Univ. Press  (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Nagata,  "Local rings" , Interscience  (1962)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D.G. Nothcott,  "Lessons on rings, modules, and multiplicities" , Cambridge Univ. Press  (1968)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  H. Matsumura,  "Commutative ring theory" , Cambridge Univ. Press  (1989)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  M. Nagata,  "Local rings" , Interscience  (1962)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  D.G. Nothcott,  "Lessons on rings, modules, and multiplicities" , Cambridge Univ. Press  (1968)</td></tr></table>

Latest revision as of 17:45, 1 July 2020

Let $( A , \mathfrak m )$ be an $r$-dimensional Noetherian ring (cf. also the section "Dimension of an associative algebra" in Dimension). Then there exists an $\mathfrak{m}$-primary ideal generated by $r$ elements (cf., e.g., [a1], p. 98, [a2], p. 27). If $x _ { 1 } , \dots , x _ { r }$ generate such an $\mathfrak{m}$-primary ideal, they are said to be a system of parameters of $A$. The terminology comes from the situation that $( A , \mathfrak m )$ is the local ring of functions at a (singular) point on an algebraic variety. The system of parameters $x _ { 1 } , \dots , x _ { r }$ is a regular system of parameters if $x _ { 1 } , \dots , x _ { r }$ generate $\mathfrak{m}$, and in that case $( A , \mathfrak m )$ is a regular local ring.

More generally, if $M$ is a finitely-generated $A$-module of dimension $s$, then there are $y _ { 1 } , \dots , y _ { s } \in \mathfrak { m }$ such that $M / ( y _ { 1 } , \ldots , y _ { s } ) M$ is of finite length; in that case $y _ { 1 } , \dots , y _ { s }$ is called a system of parameters of $M$.

The ideal $( y _ { 1 } , \dots , y _ { s } )$ is called a parameter ideal.

For a semi-local ring $A$ with maximal ideals $m _ { 1 } , \dots , m _ { r }$, an ideal $\frak a$ is called an ideal of definition if

for some natural number $k$. If $A$ is of dimension $d$, then any set of $d$ elements that generates an ideal of definition is a system of parameters of $A$, [a3], Sect. 4.9.

References

[a1] H. Matsumura, "Commutative ring theory" , Cambridge Univ. Press (1989)
[a2] M. Nagata, "Local rings" , Interscience (1962)
[a3] D.G. Nothcott, "Lessons on rings, modules, and multiplicities" , Cambridge Univ. Press (1968)
How to Cite This Entry:
System of parameters of a module over a local ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=System_of_parameters_of_a_module_over_a_local_ring&oldid=18255
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article