Namespaces
Variants
Actions

Difference between revisions of "Strip"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The set of points in a plane between two parallel straight lines in this plane. The coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904801.png" /> of a point in a strip satisfy inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904802.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904803.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904804.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904806.png" /> are certain constants with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904807.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904808.png" /> not both equal to zero. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s0904809.png" /> maps the strip <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s09048010.png" /> in the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s09048011.png" /> conformally onto the upper half-plane of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090480/s09048012.png" />-plane.
+
<!--
 +
s0904801.png
 +
$#A+1 = 12 n = 0
 +
$#C+1 = 12 : ~/encyclopedia/old_files/data/S090/S.0900480 Strip
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
 +
{{TEX|auto}}
 +
{{TEX|done}}
  
 +
The set of points in a plane between two parallel straight lines in this plane. The coordinates  $  x , y $
 +
of a point in a strip satisfy inequalities  $  C _ {1} < Ax + By < C _ {2} $,
 +
where  $  A $,
 +
$  B $,
 +
$  C _ {1} $,
 +
$  C _ {2} $
 +
are certain constants with  $  A $
 +
and  $  B $
 +
not both equal to zero. The function  $  w = e  ^ {z} $
 +
maps the strip  $  0 < y < \pi $
 +
in the complex plane  $  ( z = x + iy ) $
 +
conformally onto the upper half-plane of the complex  $  w $-
 +
plane.
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.V. Churchill,  J.W. Brown,  R.F. Verhey,  "Complex variables and applications" , McGraw-Hill  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.V. Churchill,  J.W. Brown,  R.F. Verhey,  "Complex variables and applications" , McGraw-Hill  (1974)</TD></TR></table>

Latest revision as of 08:23, 6 June 2020


The set of points in a plane between two parallel straight lines in this plane. The coordinates $ x , y $ of a point in a strip satisfy inequalities $ C _ {1} < Ax + By < C _ {2} $, where $ A $, $ B $, $ C _ {1} $, $ C _ {2} $ are certain constants with $ A $ and $ B $ not both equal to zero. The function $ w = e ^ {z} $ maps the strip $ 0 < y < \pi $ in the complex plane $ ( z = x + iy ) $ conformally onto the upper half-plane of the complex $ w $- plane.

Comments

References

[a1] R.V. Churchill, J.W. Brown, R.F. Verhey, "Complex variables and applications" , McGraw-Hill (1974)
How to Cite This Entry:
Strip. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Strip&oldid=15792
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article