Namespaces
Variants
Actions

Difference between revisions of "Stable and unstable theories"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A branch of [[Model theory|model theory]] dealing with the stability of elementary theories (cf. [[Elementary theory|Elementary theory]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871001.png" /> be a complete theory of the first order, of signature (language) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871002.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871003.png" /> be a model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871004.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871005.png" />. The signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871006.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871007.png" /> by adding isolated element symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871008.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s0871009.png" />. The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710010.png" /> has signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710011.png" /> and is an enrichment (simple expansion) of the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710012.png" />, in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710013.png" /> is interpreted as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710014.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710015.png" />. The theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710016.png" /> is the totality of formulas of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710017.png" /> that are true in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710018.png" />. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710019.png" /> of formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710020.png" /> in the language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710021.png" /> with one free variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710022.png" /> is a type of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710023.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710024.png" /> is satisfiable. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710025.png" /> is the collection of all maximal types of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710026.png" />. The theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710027.png" /> is said to be stable at cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710028.png" /> if for any model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710029.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710030.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710031.png" /> of cardinality not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710032.png" />, the cardinality of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710033.png" /> also does not exceed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710034.png" />. A theory is called stable if it is stable at even one infinite cardinality.
+
<!--
 +
s0871001.png
 +
$#A+1 = 95 n = 0
 +
$#C+1 = 95 : ~/encyclopedia/old_files/data/S087/S.0807100 Stable and unstable theories
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710035.png" /> denote the cardinality of the set of formulas of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710037.png" /> is stable, then it is stable at all cardinalities that satisfy the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710039.png" /> is stable, then there exist a model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710040.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710041.png" /> and an infinite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710042.png" /> such that for any formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710043.png" /> of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710044.png" /> and for any two sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710046.png" /> of different elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710047.png" />, the truth of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710048.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710049.png" /> is equivalent to the truth of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710050.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710051.png" />; the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710052.png" /> is then called the set of indistinguishable elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710053.png" />. A characteristic property of unstable theories is the existence of a set which has somehow opposite properties. Namely, the instability of a theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710054.png" /> is equivalent to the existence of a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710055.png" /> of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710056.png" />, of a model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710057.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710058.png" /> and of a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710059.png" /> of tuples of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710060.png" />, such that the truth of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710061.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710062.png" /> is equivalent to the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710063.png" />. For this reason, complete extensions of the theory of totally ordered sets with infinite models, as well as the theory of any infinite [[Boolean algebra|Boolean algebra]], are unstable. In particular, the theory of natural numbers with addition and the theory of the field of real numbers are unstable. If a theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710064.png" /> is unstable, then the number of isomorphism types of models of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710065.png" /> at every uncountable cardinal number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710066.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710067.png" />. A theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710068.png" /> that is categorical at an uncountable cardinal number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710069.png" /> (cf. [[Categoricity in cardinality|Categoricity in cardinality]]) is therefore stable. There do exist stable theories, however, that are not categorical at any infinite cardinality. Such an example is the theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710070.png" /> whose signature consists of a one-place predicate and a countable set of isolated elements. The axioms of this theory state that a predicate is true on the isolated elements, divides every model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710071.png" /> into two infinite sets, and that the isolated elements are not equal to each other.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Theories of finite or countable signature that are stable at a countable cardinality are also said to be totally transcendental. Every totally transcendental theory is stable at all infinite cardinalities. Every categorical theory of finite or countable signature at an uncountable cardinality is totally transcendental. The theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710072.png" /> above is totally transcendental. Totally transcendental theories can also be characterized in other terms. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710073.png" /> be a complete theory of finite or countable signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710074.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710075.png" /> be an infinite model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710076.png" />. A formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710077.png" /> of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710078.png" /> is given the rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710079.png" /> if it is false on all elements of the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710080.png" />, and the rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710081.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710082.png" /> is an ordinal number) if it does not have any rank lower than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710083.png" />; however, for every elementary extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710084.png" /> of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710085.png" />, and for every formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710086.png" /> of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710087.png" />, one of the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710088.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710089.png" /> is given a rank less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710090.png" />. A theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710091.png" /> is totally transcendental if and only if for every model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710092.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710093.png" />, each formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710094.png" /> of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087100/s08710095.png" /> is given a certain rank.
+
A branch of [[Model theory|model theory]] dealing with the stability of elementary theories (cf. [[Elementary theory|Elementary theory]]). Let  $  T $
 +
be a complete theory of the first order, of signature (language)  $  \Omega $,
 +
let  $  A $
 +
be a model of  $  T $
 +
and let  $  X \subseteq | A | $.
 +
The signature  $  \langle  \Omega , X\rangle $
 +
is obtained from  $  \Omega $
 +
by adding isolated element symbols  $  c _ {a} $
 +
for all  $  a \in X $.
 +
The system  $  \langle  A, X\rangle $
 +
has signature  $  \langle  \Omega , X\rangle $
 +
and is an enrichment (simple expansion) of the model  $  A $,
 +
in which  $  c _ {a} $
 +
is interpreted as  $  a $
 +
for all  $  a \in X $.
 +
The theory  $  T( A, X) $
 +
is the totality of formulas of signature  $  \langle  \Omega , X\rangle $
 +
that are true in  $  \langle  A, X\rangle $.
 +
A set  $  \tau ( x) $
 +
of formulas  $  \phi ( x) $
 +
in the language  $  \langle  \Omega , X\rangle $
 +
with one free variable  $  x $
 +
is a type of  $  \langle  A, X\rangle $
 +
if  $  \tau ( x) \cup T( A, X) $
 +
is satisfiable.  $  S( A, X) $
 +
is the collection of all maximal types of  $  \langle  A , X\rangle $.
 +
The theory  $  T $
 +
is said to be stable at cardinality  $  \lambda $
 +
if for any model  $  A $
 +
of  $  T $
 +
and any  $  X \subseteq | A | $
 +
of cardinality not exceeding  $  \lambda $,
 +
the cardinality of  $  S( A, X) $
 +
also does not exceed  $  \lambda $.
 +
A theory is called stable if it is stable at even one infinite cardinality.
 +
 
 +
Let  $  | T | $
 +
denote the cardinality of the set of formulas of signature  $  \Omega $.
 +
If  $  T $
 +
is stable, then it is stable at all cardinalities that satisfy the equality  $  \lambda = \lambda ^ {| T | } $.
 +
If  $  T $
 +
is stable, then there exist a model  $  A $
 +
of  $  T $
 +
and an infinite set  $  Y \subseteq | A | $
 +
such that for any formula  $  \phi ( v _ {1} \dots v _ {n} ) $
 +
of signature  $  \Omega $
 +
and for any two sequences  $  \langle  a _ {1} \dots a _ {n} \rangle $,
 +
$  \langle  b _ {1} \dots b _ {n} \rangle $
 +
of different elements of  $  Y $,
 +
the truth of  $  \phi ( a _ {1} \dots a _ {n} ) $
 +
in  $  A $
 +
is equivalent to the truth of  $  \phi ( b _ {1} \dots b _ {n} ) $
 +
in  $  A $;
 +
the set  $  Y $
 +
is then called the set of indistinguishable elements in  $  T $.
 +
A characteristic property of unstable theories is the existence of a set which has somehow opposite properties. Namely, the instability of a theory  $  T $
 +
is equivalent to the existence of a formula  $  \phi ( v _ {1} \dots v _ {n} ;  u _ {1} \dots u _ {n} ) $
 +
of signature  $  \Omega $,
 +
of a model  $  A $
 +
of  $  T $
 +
and of a sequence  $  \langle  a _ {1}  ^ {0} \dots a _ {n}  ^ {0} \rangle , \langle  a _ {1}  ^ {1} \dots a _ {n}  ^ {1} \rangle \dots $
 +
of tuples of elements of  $  A $,
 +
such that the truth of  $  \phi ( a _ {1}  ^ {i} \dots a _ {n}  ^ {i} ;  a _ {1}  ^ {j} \dots a _ {n}  ^ {j} ) $
 +
in  $  A $
 +
is equivalent to the inequality  $  i < j $.
 +
For this reason, complete extensions of the theory of totally ordered sets with infinite models, as well as the theory of any infinite [[Boolean algebra|Boolean algebra]], are unstable. In particular, the theory of natural numbers with addition and the theory of the field of real numbers are unstable. If a theory  $  T $
 +
is unstable, then the number of isomorphism types of models of  $  T $
 +
at every uncountable cardinal number  $  \lambda > | T | $
 +
is equal to  $  2  ^  \lambda  $.
 +
A theory  $  T $
 +
that is categorical at an uncountable cardinal number  $  \lambda > | T | $(
 +
cf. [[Categoricity in cardinality|Categoricity in cardinality]]) is therefore stable. There do exist stable theories, however, that are not categorical at any infinite cardinality. Such an example is the theory  $  T _ {1} $
 +
whose signature consists of a one-place predicate and a countable set of isolated elements. The axioms of this theory state that a predicate is true on the isolated elements, divides every model of  $  T _ {1} $
 +
into two infinite sets, and that the isolated elements are not equal to each other.
 +
 
 +
Theories of finite or countable signature that are stable at a countable cardinality are also said to be totally transcendental. Every totally transcendental theory is stable at all infinite cardinalities. Every categorical theory of finite or countable signature at an uncountable cardinality is totally transcendental. The theory $  T _ {1} $
 +
above is totally transcendental. Totally transcendental theories can also be characterized in other terms. Let $  T $
 +
be a complete theory of finite or countable signature $  \Omega $
 +
and let $  A $
 +
be an infinite model of $  T $.  
 +
A formula $  \phi ( v _ {0} ) $
 +
of signature $  \langle  \Omega , | A | \rangle $
 +
is given the rank $  - 1 $
 +
if it is false on all elements of the model $  \langle  A, | A | \rangle $,  
 +
and the rank $  \alpha $(
 +
$  \alpha $
 +
is an ordinal number) if it does not have any rank lower than $  \alpha $;  
 +
however, for every elementary extension $  B $
 +
of the system $  A $,  
 +
and for every formula $  \psi ( v _ {0} ) $
 +
of signature $  \langle  \Omega , | B | \rangle $,  
 +
one of the formulas $  \psi ( v _ {0} ) \& \psi ( v _ {0} ) $
 +
or $  \neg \psi ( v _ {0} ) \& \phi ( v _ {0} ) $
 +
is given a rank less than $  \alpha $.  
 +
A theory $  T $
 +
is totally transcendental if and only if for every model $  A $
 +
of $  T $,  
 +
each formula $  \phi $
 +
of signature $  \langle  \Omega , | A | \rangle $
 +
is given a certain rank.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Shelah,  "Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory"  ''Ann. of Math. Logic'' , '''3''' :  3  (1971)  pp. 271–362</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Shelah,  "Classification theory and the number of non-isomorphic models" , North-Holland  (1990)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Shelah,  "Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory"  ''Ann. of Math. Logic'' , '''3''' :  3  (1971)  pp. 271–362</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Shelah,  "Classification theory and the number of non-isomorphic models" , North-Holland  (1990)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:22, 6 June 2020


A branch of model theory dealing with the stability of elementary theories (cf. Elementary theory). Let $ T $ be a complete theory of the first order, of signature (language) $ \Omega $, let $ A $ be a model of $ T $ and let $ X \subseteq | A | $. The signature $ \langle \Omega , X\rangle $ is obtained from $ \Omega $ by adding isolated element symbols $ c _ {a} $ for all $ a \in X $. The system $ \langle A, X\rangle $ has signature $ \langle \Omega , X\rangle $ and is an enrichment (simple expansion) of the model $ A $, in which $ c _ {a} $ is interpreted as $ a $ for all $ a \in X $. The theory $ T( A, X) $ is the totality of formulas of signature $ \langle \Omega , X\rangle $ that are true in $ \langle A, X\rangle $. A set $ \tau ( x) $ of formulas $ \phi ( x) $ in the language $ \langle \Omega , X\rangle $ with one free variable $ x $ is a type of $ \langle A, X\rangle $ if $ \tau ( x) \cup T( A, X) $ is satisfiable. $ S( A, X) $ is the collection of all maximal types of $ \langle A , X\rangle $. The theory $ T $ is said to be stable at cardinality $ \lambda $ if for any model $ A $ of $ T $ and any $ X \subseteq | A | $ of cardinality not exceeding $ \lambda $, the cardinality of $ S( A, X) $ also does not exceed $ \lambda $. A theory is called stable if it is stable at even one infinite cardinality.

Let $ | T | $ denote the cardinality of the set of formulas of signature $ \Omega $. If $ T $ is stable, then it is stable at all cardinalities that satisfy the equality $ \lambda = \lambda ^ {| T | } $. If $ T $ is stable, then there exist a model $ A $ of $ T $ and an infinite set $ Y \subseteq | A | $ such that for any formula $ \phi ( v _ {1} \dots v _ {n} ) $ of signature $ \Omega $ and for any two sequences $ \langle a _ {1} \dots a _ {n} \rangle $, $ \langle b _ {1} \dots b _ {n} \rangle $ of different elements of $ Y $, the truth of $ \phi ( a _ {1} \dots a _ {n} ) $ in $ A $ is equivalent to the truth of $ \phi ( b _ {1} \dots b _ {n} ) $ in $ A $; the set $ Y $ is then called the set of indistinguishable elements in $ T $. A characteristic property of unstable theories is the existence of a set which has somehow opposite properties. Namely, the instability of a theory $ T $ is equivalent to the existence of a formula $ \phi ( v _ {1} \dots v _ {n} ; u _ {1} \dots u _ {n} ) $ of signature $ \Omega $, of a model $ A $ of $ T $ and of a sequence $ \langle a _ {1} ^ {0} \dots a _ {n} ^ {0} \rangle , \langle a _ {1} ^ {1} \dots a _ {n} ^ {1} \rangle \dots $ of tuples of elements of $ A $, such that the truth of $ \phi ( a _ {1} ^ {i} \dots a _ {n} ^ {i} ; a _ {1} ^ {j} \dots a _ {n} ^ {j} ) $ in $ A $ is equivalent to the inequality $ i < j $. For this reason, complete extensions of the theory of totally ordered sets with infinite models, as well as the theory of any infinite Boolean algebra, are unstable. In particular, the theory of natural numbers with addition and the theory of the field of real numbers are unstable. If a theory $ T $ is unstable, then the number of isomorphism types of models of $ T $ at every uncountable cardinal number $ \lambda > | T | $ is equal to $ 2 ^ \lambda $. A theory $ T $ that is categorical at an uncountable cardinal number $ \lambda > | T | $( cf. Categoricity in cardinality) is therefore stable. There do exist stable theories, however, that are not categorical at any infinite cardinality. Such an example is the theory $ T _ {1} $ whose signature consists of a one-place predicate and a countable set of isolated elements. The axioms of this theory state that a predicate is true on the isolated elements, divides every model of $ T _ {1} $ into two infinite sets, and that the isolated elements are not equal to each other.

Theories of finite or countable signature that are stable at a countable cardinality are also said to be totally transcendental. Every totally transcendental theory is stable at all infinite cardinalities. Every categorical theory of finite or countable signature at an uncountable cardinality is totally transcendental. The theory $ T _ {1} $ above is totally transcendental. Totally transcendental theories can also be characterized in other terms. Let $ T $ be a complete theory of finite or countable signature $ \Omega $ and let $ A $ be an infinite model of $ T $. A formula $ \phi ( v _ {0} ) $ of signature $ \langle \Omega , | A | \rangle $ is given the rank $ - 1 $ if it is false on all elements of the model $ \langle A, | A | \rangle $, and the rank $ \alpha $( $ \alpha $ is an ordinal number) if it does not have any rank lower than $ \alpha $; however, for every elementary extension $ B $ of the system $ A $, and for every formula $ \psi ( v _ {0} ) $ of signature $ \langle \Omega , | B | \rangle $, one of the formulas $ \psi ( v _ {0} ) \& \psi ( v _ {0} ) $ or $ \neg \psi ( v _ {0} ) \& \phi ( v _ {0} ) $ is given a rank less than $ \alpha $. A theory $ T $ is totally transcendental if and only if for every model $ A $ of $ T $, each formula $ \phi $ of signature $ \langle \Omega , | A | \rangle $ is given a certain rank.

References

[1] S. Shelah, "Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory" Ann. of Math. Logic , 3 : 3 (1971) pp. 271–362
[2] S. Shelah, "Classification theory and the number of non-isomorphic models" , North-Holland (1990)

Comments

See also Stability theory (in logic).

References

[a1] J.T. Baldwin, "Fundamentals of stability theory" , Springer (1988)
[a2] D. Lascar, "Stability in model theory" , Wiley (1987)
[a3] A. Pillay, "An introduction to stability theory" , Clarendon Press (1983)
[a4] C.C. Chang, H.J. Keisler, "Model theory" , North-Holland (1990)
How to Cite This Entry:
Stable and unstable theories. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stable_and_unstable_theories&oldid=16041
This article was adapted from an original article by E.A. PalyutinM.A. Taitslin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article