Namespaces
Variants
Actions

Sporadic simple group

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 20D08 [MSN][ZBL]

A sporadic simple group is a simple finite group that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table.

$\def\d{\cdot}$

The twenty-six sporadic simple groups
Notation Name Order
$M_{11}$ Mathieu groups $2^4\d 3^2\d 5\d 11$
$M_{12}$ $2^6\d 3^3\d 5\d 11$
$M_{22}$ $2^7\d 3^2\d 5\d 7\d 11$
$M_{23}$ $2^7\d 3^2\d 5\d 7\d 11\d 23$
$M_{24}$ $2^{10}\d 3^3\d 5\d 7\d 11\d 23$
$J_1$ Janko group $2^3\d 3\d 5\d 7\d 11\d 19$
$J_2$, $HJ$ Hall–Janko group $2^7\d 3^3\d 5^2\d 7$
$J_3$, $HJM$ Hall–Janko–McKay group $2^7\d 3^5\d 5\d 17\d 19$
$J_4$ Janko group $2^{21}\d 3^3\d 5\d 7\d 11^3\d 23\d 29\d 31\d 37\d 43$
$Co_1$ Conway groups $2^{21}\d 3^9\d 5^4\d 7^2\d 11\d 13\d 23$
$Co_2$ $2^{18}\d 3^6\d 5^3\d 7\d 11\d 23$
$Co_3$ $2^{10}\d 3^7\d 5^3\d 7\d 11\d 23$
$F_{22}$, $M(22)$ Fischer groups $2^{17}\d 3^9\d 5^2\d 7\d 11\d 13$
$F_{23}$, $M(23)$ $2^{18}\d 3^{13}\d 5^2\d 7\d 11\d 13\d 17\d 23$
$F_{24}^\prime$, $M(24)^\prime$ $2^{21}\d 3^{16}\d 5^2\d 7^3\d 11\d 13\d 17\d 23\d 29$
$HS$ Higman–Sims group $2^9\d 3^2\d 5^3\d 7\d 11$
$He$, $HHM$ Held–Higman–McKay group $2^{10}\d 3^3\d 5^2\d 7^3\d 17$
$Suz$ Suzuki group $2^{13}\d 3^7\d 5^2\d 7\d 11\d 13$
$McL$ McLaughlin group $2^7\d 3^6\d 5^3\d 7\d 11$
$Ly$ Lyons group $2^8\d 3^7\d 5^6\d 7\d 11\d 31\d 37\d 67$
$Ru$ Rudvalis group $2^{14}\d 3^3\d 5^3\d 7\d 13\d 29$
$O'N$, $O'NS$ O'Nan–Sims group $2^9\d 3^4\d 5\d 7^3\d 11\d 19\d 31$
$F_1$, $M$ Monster, Fischer–Griess group $2^{46}\d 3^{20}\d 5^9\d 7^6\d 11^2\d 13^3\d 17\d 19\d 23\d 29\d 31\d 41\d 47\d 59\d 71$
$F_2$, $B$ Baby monster $2^{41}\d 3^{13}\d 5^6\d 7^2\d 11\d 13\d 17\d 19\d 23\d 31\d 47$
$F_3$, $E$, $Th$ Thompson group $2^{15}\d 3^{10}\d 5^3\d 7^2\d 13\d 19\d 31$
$F_5$, $D$, $HN$ Harada–Norton group $2^{14}\d 3^6\d 5^6\d 7\d 11\d 19$


Comments

The classification of the finite simple groups (cf. [As], [Go]) has led to the conclusion that every non-Abelian finite simple group is isomorphic to: an alternating group on at least 5 letters, a group of (twisted or untwisted) Lie type, or one of the above 26 sporadic groups. A discussion of the proof is given in [Go] up to the uniqueness proof for the monster group $F_1$, which did appear in [GrMeSe].


References

[As] M. Aschbacher, "The finite simple groups and their classification", Yale Univ. Press (1980) MR0555880 Zbl 0435.20007
[CoCuNoPaWi] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups", Clarendon Press (1985) MR0827219 Zbl 0568.20001
[Go] D. Gorenstein, "Finite simple groups. An introduction to their classification", University Series in Mathematics. Plenum Publishing Corp., New York (1982) MR0698782 Zbl 0483.20008
[GrMeSe] R.L. Griess, U. Meierfrankenfeld, Y. Segev, "A uniqueness proof for the Monster". Ann. of Math. (2) 130 (1989), no. 3, 567–602. MR1025167 Zbl 0691.20014
[Sy] S.A. Syskin, "Abstract properties of the simple sporadic groups" Russian Math. Surveys, 35 : 5 (1980) pp. 209–246 Uspekhi Mat. Nauk, 35 : 5 (1980) pp. 181–212 MR0595144 Zbl 0466.20006
How to Cite This Entry:
Sporadic simple group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sporadic_simple_group&oldid=25804
This article was adapted from an original article by V.D. Mazurov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article