Namespaces
Variants
Actions

Sporadic simple group

From Encyclopedia of Mathematics
Revision as of 17:58, 30 April 2012 by Jjg (talk | contribs) (TEXdone, MSC but no REFS)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 20D08 [MSN][ZBL]

A simple finite group that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table.

The twenty-six sporadic simple groups
notation name order
$M_{11}$ Mathieu groups $2^4.3^2.5.11$
$M_{12}$ $2^6.3^3.5.11$
$M_{22}$ $2^7.3^2.5.7.11$
$M_{23}$ $2^7.3^2.5.7.11.23$
$M_{24}$ $2^{10}.3^3.5.7.11.23$
$J_1$ Janko group $2^3.3.5.7.11.19$
$J_2$, $HJ$ Hall–Janko group $2^7.3^3.5^2.7$
$J_3$, $HJM$ Hall–Janko–McKay group $2^7.3^5.5.17.19$
$J_4$ Janko group $2^{21}.3^3.5.7.11^3.23.29.31.37.43$
$Co_1$ Conway groups $2^{21}.3^9.5^4.7^2.11.13.23$
$Co_2$ $2^{18}.3^6.5^3.7.11.23$
$Co_3$ $2^{10}.3^7.5^3.7.11.23$
$F_{22}$, $M(22)$ Fischer groups $2^{17}.3^9.5^2.7.11.13$
$F_{23}$, $M(23)$ $2^{18}.3^{13}.5^2.7.11.13.17.23$
$F_{24}^\prime$, $M(24)^\prime$ $2^{21}.3^{16}.5^2.7^3.11.13.17.23.29$
$HS$ Higman–Sims group $2^9.3^2.5^3.7.11$
$He$, $HHM$ Held–Higman–McKay group $2^{10}.3^3.5^2.7^3.17$
$Suz$ Suzuki group $2^{13}.3^7.5^2.7.11.13$
$M^c$ McLaughlin group $2^7.3^6.5^3.7.11$
$Ly$ Lyons group $2^8.3^7.5^6.7.11.31.37.67$
$Ru$ Rudvalis group $2^{14}.3^3.5^3.7.13.29$
$O'N$, $O'NS$ O'Nan–Sims group $2^9.3^4.5.7^3.11.19.31$
$F_1$, $M$ Monster, Fischer–Griess group $2^{46}.3^{20}.5^9.7^6.11^2.13^3.17.19.23.29.31.41.47.59.71$
$F_2$, $B$ Baby monster $2^{41}.3^{13}.5^6.7^2.11.13.17.19.23.31.47$
$F_3$, $E$, $Th$ Thompson group $2^{15}.3^{10}.5^3.7^2.13.19.31$
$F_5$, $D$, $HN$ Harada–Norton group $2^{14}.3^6.5^6.7.11.19$

References

[1] S.A. Syskin, "Abstract properties of the simple sporadic groups" Russian Math. Surveys , 35 : 5 (1980) pp. 209–246 Uspekhi Mat. Nauk , 35 : 5 (1980) pp. 181–212
[2] M. Aschbacher, "The finite simple groups and their classification" , Yale Univ. Press (1980)

Comments

The recent classification of the finite simple groups (1981) has led to the conclusion that — up to a uniqueness proof for the Monster as the only simple group of its order with certain additional properties — every non-Abelian finite simple group is isomorphic to: an alternating group on at least 5 letters, a group of (twisted or untwisted) Lie type, or one of the above 26 sporadic groups. See [a2] for a discussion of the proof.

References

[a1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)
[a2] D. Gorenstein, "Finite simple groups. An introduction to their classification" , Plenum (1982)
How to Cite This Entry:
Sporadic simple group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sporadic_simple_group&oldid=25784
This article was adapted from an original article by V.D. Mazurov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article