Namespaces
Variants
Actions

Difference between revisions of "Sporadic simple group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (typo)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A [[Simple finite group|simple finite group]] that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table.''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1">notation</td> <td colname="2" style="background-color:white;" colspan="1">name</td> <td colname="3" style="background-color:white;" colspan="1">order</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868701.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868702.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868703.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868704.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868705.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Mathieu groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868706.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868707.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868708.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868709.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687010.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687011.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687012.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687014.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Hall–Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687015.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687017.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Higman–Janko–McKay group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687018.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687019.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687020.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687022.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687023.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687025.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Conway groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687026.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687028.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687029.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687031.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687032.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687034.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Fischer groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687035.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687037.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687038.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687039.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Higman–Sims group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687040.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687042.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Held–Higman–McKay group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687043.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687044.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Suzuki group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687045.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687046.png" /></td> <td colname="2" style="background-color:white;" colspan="1">McLaughlin group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687047.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687048.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Lyons group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687049.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687050.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Rudvalis group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687051.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687053.png" /></td> <td colname="2" style="background-color:white;" colspan="1">O'Nan–Sims group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687054.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687056.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Monster, Fischer–Griess group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687057.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687059.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Baby monster</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687060.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687063.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Thompson group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687064.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687067.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Harada–Norton group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687068.png" /></td> </tr> </tbody> </table>
+
{{MSC|20D08}}
 +
{{TEX|done}}
  
</td></tr> </table>
+
A ''sporadic simple group'' is
 +
a [[Simple finite group|simple finite group]] that does not belong to  any of the known infinite series of simple finite groups. The  twenty-six sporadic simple groups are listed in the following  table.
  
====References====
+
$\def\d{\cdot}$
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.A. Syskin,   "Abstract properties of the simple sporadic groups"  ''Russian Math. Surveys'' , '''35''' :  5 (1980) pp. 209–246  ''Uspekhi Mat. Nauk'' , '''35''' :  5 (1980)  pp. 181–212</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Aschbacher,   "The finite simple groups and their classification" , Yale Univ. Press  (1980)</TD></TR></table>
+
{| class="wikitable" style="margin: 1em auto 1em auto;"
 +
|+ The twenty-six sporadic simple groups
 +
! Notation
 +
! Name
 +
! Order
 +
|-
 +
| $M_{11}$
 +
| rowspan="5" | [[Mathieu group | Mathieu groups]]
 +
| $2^4\d 3^2\d 5\d 11$
 +
|-
 +
| $M_{12}$
 +
| $2^6\d 3^3\d 5\d 11$
 +
|-
 +
| $M_{22}$
 +
| $2^7\d 3^2\d 5\d 7\d 11$
 +
|-
 +
| $M_{23}$
 +
| $2^7\d 3^2\d 5\d 7\d 11\d 23$
 +
|-
 +
| $M_{24}$
 +
| $2^{10}\d 3^3\d 5\d 7\d 11\d 23$
 +
|-
 +
| $J_1$
 +
| Janko group
 +
| $2^3\d 3\d 5\d 7\d 11\d 19$
 +
|-
 +
| $J_2$, $HJ$
 +
| Hall&ndash;Janko group
 +
| $2^7\d 3^3\d 5^2\d 7$
 +
|-
 +
| $J_3$, $HJM$
 +
| Hall&ndash;Janko&ndash;McKay group
 +
| $2^7\d 3^5\d 5\d 17\d 19$
 +
|-
 +
| $J_4$
 +
| Janko group
 +
| $2^{21}\d 3^3\d 5\d 7\d 11^3\d 23\d 29\d 31\d 37\d 43$
 +
|-
 +
| $Co_1$
 +
| rowspan="3" | Conway groups
 +
| $2^{21}\d 3^9\d 5^4\d 7^2\d 11\d 13\d 23$
 +
|-
 +
| $Co_2$
 +
| $2^{18}\d 3^6\d 5^3\d 7\d 11\d 23$
 +
|-
 +
| $Co_3$
 +
| $2^{10}\d 3^7\d 5^3\d 7\d 11\d 23$
 +
|-
 +
| $F_{22}$, $M(22)$
 +
| rowspan="3" | Fischer groups
 +
| $2^{17}\d 3^9\d 5^2\d 7\d 11\d 13$
 +
|-
 +
| $F_{23}$, $M(23)$
 +
| $2^{18}\d 3^{13}\d 5^2\d 7\d 11\d 13\d 17\d 23$
 +
|-
 +
| $F_{24}^\prime$, $M(24)^\prime$
 +
| $2^{21}\d 3^{16}\d 5^2\d 7^3\d 11\d 13\d 17\d 23\d 29$
 +
|-
 +
| $HS$
 +
| Higman&ndash;Sims group
 +
| $2^9\d 3^2\d 5^3\d 7\d 11$
 +
|-
 +
| $He$, $HHM$
 +
| Held&ndash;Higman&ndash;McKay group
 +
| $2^{10}\d 3^3\d 5^2\d 7^3\d 17$
 +
|-
 +
| $Suz$
 +
| Suzuki group
 +
| $2^{13}\d 3^7\d 5^2\d 7\d 11\d 13$
 +
|-
 +
| $McL$
 +
| McLaughlin group
 +
| $2^7\d 3^6\d 5^3\d 7\d 11$
 +
|-
 +
| $Ly$
 +
| Lyons group
 +
| $2^8\d 3^7\d 5^6\d 7\d 11\d 31\d 37\d 67$
 +
|-
 +
| $Ru$
 +
| Rudvalis group
 +
| $2^{14}\d 3^3\d 5^3\d 7\d 13\d 29$
 +
|-
 +
| $O'N$, $O'NS$
 +
| O'Nan&ndash;Sims group
 +
| $2^9\d 3^4\d 5\d 7^3\d 11\d 19\d 31$
 +
|-
 +
| $F_1$, $M$
 +
| Monster, Fischer&ndash;Griess group
 +
| $2^{46}\d 3^{20}\d 5^9\d 7^6\d 11^2\d 13^3\d 17\d 19\d 23\d 29\d 31\d 41\d 47\d 59\d 71$
 +
|-
 +
| $F_2$, $B$
 +
| Baby monster
 +
| $2^{41}\d 3^{13}\d 5^6\d 7^2\d 11\d 13\d 17\d 19\d 23\d 31\d 47$
 +
|-
 +
| $F_3$, $E$, $Th$
 +
| Thompson group
 +
| $2^{15}\d 3^{10}\d 5^3\d 7^2\d 13\d 19\d 31$
 +
|-
 +
| $F_5$, $D$, $HN$
 +
| Harada&ndash;Norton group
 +
| $2^{14}\d 3^6\d 5^6\d 7\d 11\d 19$
 +
|}
  
  
 +
====Comments====
 +
The classification of the finite simple groups (cf. {{Cite|As}}, {{Cite|Go}}) has led to  the  conclusion that
 +
every  non-Abelian finite simple group is isomorphic to: an  [[Alternating  group|alternating group]] on at least 5 letters, a group  of (twisted or untwisted) Lie type, or one of the above 26 sporadic  groups.
 +
A discussion of the proof is given in {{Cite|Go}} up to the uniqueness
 +
proof for the monster group $F_1$, which did appear in {{Cite|GrMeSe}}.
  
====Comments====
 
The recent classification of the finite simple groups (1981) has led to the conclusion that — up to a uniqueness proof for the Monster as the only simple group of its order with certain additional properties — every non-Abelian finite simple group is isomorphic to: an [[Alternating group|alternating group]] on at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687069.png" /> letters, a group of (twisted or untwisted) Lie type, or one of the above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687070.png" /> sporadic groups. See [[#References|[a2]]] for a discussion of the proof.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.H. Conway,   R.T. Curtis,  S.P. Norton,  R.A. Parker,  R.A. Wilson,  "Atlas of finite groups" , Clarendon Press (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Gorenstein,   "Finite simple groups. An introduction to their classification" , Plenum  (1982)</TD></TR></table>
+
{|
 +
|-
 +
|  valign="top"|{{Ref|As}}||valign="top"|  M. Aschbacher,    "The finite simple groups and their classification", Yale Univ. Press    (1980)  {{MR|0555880}}  {{ZBL|0435.20007}}
 +
|-
 +
valign="top"|{{Ref|CoCuNoPaWi}}||valign="top"| J.H. Conway,     R.T. Curtis,  S.P. Norton,  R.A. Parker,  R.A. Wilson,  "Atlas of   finite groups", Clarendon Press   (1985) {{MR|0827219}}  {{ZBL|0568.20001}}
 +
|-
 +
valign="top"|{{Ref|Go}}||valign="top"| D. Gorenstein,     "Finite simple groups. An introduction to their classification", University Series in Mathematics. Plenum Publishing Corp., New York (1982)  {{MR|0698782}}  {{ZBL|0483.20008}}
 +
|-
 +
| valign="top"|{{Ref|GrMeSe}}||valign="top"| R.L. Griess, U. Meierfrankenfeld, Y. Segev, "A uniqueness proof for the Monster". ''Ann. of Math.'' (2) '''130''' (1989), no. 3, 567–602. {{MR|1025167}} {{ZBL|0691.20014}}
 +
|-
 +
|  valign="top"|{{Ref|Sy}}||valign="top"|  S.A. Syskin,    "Abstract properties of the simple sporadic groups"  ''Russian Math.  Surveys'', '''35''' :  5 (1980)  pp. 209–246  ''Uspekhi Mat. Nauk'',  '''35''' :  5  (1980) pp.  181–212  {{MR|0595144}} {{ZBL|0466.20006}}
 +
|-
 +
|}

Latest revision as of 09:12, 1 May 2012

2020 Mathematics Subject Classification: Primary: 20D08 [MSN][ZBL]

A sporadic simple group is a simple finite group that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table.

$\def\d{\cdot}$

The twenty-six sporadic simple groups
Notation Name Order
$M_{11}$ Mathieu groups $2^4\d 3^2\d 5\d 11$
$M_{12}$ $2^6\d 3^3\d 5\d 11$
$M_{22}$ $2^7\d 3^2\d 5\d 7\d 11$
$M_{23}$ $2^7\d 3^2\d 5\d 7\d 11\d 23$
$M_{24}$ $2^{10}\d 3^3\d 5\d 7\d 11\d 23$
$J_1$ Janko group $2^3\d 3\d 5\d 7\d 11\d 19$
$J_2$, $HJ$ Hall–Janko group $2^7\d 3^3\d 5^2\d 7$
$J_3$, $HJM$ Hall–Janko–McKay group $2^7\d 3^5\d 5\d 17\d 19$
$J_4$ Janko group $2^{21}\d 3^3\d 5\d 7\d 11^3\d 23\d 29\d 31\d 37\d 43$
$Co_1$ Conway groups $2^{21}\d 3^9\d 5^4\d 7^2\d 11\d 13\d 23$
$Co_2$ $2^{18}\d 3^6\d 5^3\d 7\d 11\d 23$
$Co_3$ $2^{10}\d 3^7\d 5^3\d 7\d 11\d 23$
$F_{22}$, $M(22)$ Fischer groups $2^{17}\d 3^9\d 5^2\d 7\d 11\d 13$
$F_{23}$, $M(23)$ $2^{18}\d 3^{13}\d 5^2\d 7\d 11\d 13\d 17\d 23$
$F_{24}^\prime$, $M(24)^\prime$ $2^{21}\d 3^{16}\d 5^2\d 7^3\d 11\d 13\d 17\d 23\d 29$
$HS$ Higman–Sims group $2^9\d 3^2\d 5^3\d 7\d 11$
$He$, $HHM$ Held–Higman–McKay group $2^{10}\d 3^3\d 5^2\d 7^3\d 17$
$Suz$ Suzuki group $2^{13}\d 3^7\d 5^2\d 7\d 11\d 13$
$McL$ McLaughlin group $2^7\d 3^6\d 5^3\d 7\d 11$
$Ly$ Lyons group $2^8\d 3^7\d 5^6\d 7\d 11\d 31\d 37\d 67$
$Ru$ Rudvalis group $2^{14}\d 3^3\d 5^3\d 7\d 13\d 29$
$O'N$, $O'NS$ O'Nan–Sims group $2^9\d 3^4\d 5\d 7^3\d 11\d 19\d 31$
$F_1$, $M$ Monster, Fischer–Griess group $2^{46}\d 3^{20}\d 5^9\d 7^6\d 11^2\d 13^3\d 17\d 19\d 23\d 29\d 31\d 41\d 47\d 59\d 71$
$F_2$, $B$ Baby monster $2^{41}\d 3^{13}\d 5^6\d 7^2\d 11\d 13\d 17\d 19\d 23\d 31\d 47$
$F_3$, $E$, $Th$ Thompson group $2^{15}\d 3^{10}\d 5^3\d 7^2\d 13\d 19\d 31$
$F_5$, $D$, $HN$ Harada–Norton group $2^{14}\d 3^6\d 5^6\d 7\d 11\d 19$


Comments

The classification of the finite simple groups (cf. [As], [Go]) has led to the conclusion that every non-Abelian finite simple group is isomorphic to: an alternating group on at least 5 letters, a group of (twisted or untwisted) Lie type, or one of the above 26 sporadic groups. A discussion of the proof is given in [Go] up to the uniqueness proof for the monster group $F_1$, which did appear in [GrMeSe].


References

[As] M. Aschbacher, "The finite simple groups and their classification", Yale Univ. Press (1980) MR0555880 Zbl 0435.20007
[CoCuNoPaWi] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups", Clarendon Press (1985) MR0827219 Zbl 0568.20001
[Go] D. Gorenstein, "Finite simple groups. An introduction to their classification", University Series in Mathematics. Plenum Publishing Corp., New York (1982) MR0698782 Zbl 0483.20008
[GrMeSe] R.L. Griess, U. Meierfrankenfeld, Y. Segev, "A uniqueness proof for the Monster". Ann. of Math. (2) 130 (1989), no. 3, 567–602. MR1025167 Zbl 0691.20014
[Sy] S.A. Syskin, "Abstract properties of the simple sporadic groups" Russian Math. Surveys, 35 : 5 (1980) pp. 209–246 Uspekhi Mat. Nauk, 35 : 5 (1980) pp. 181–212 MR0595144 Zbl 0466.20006
How to Cite This Entry:
Sporadic simple group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sporadic_simple_group&oldid=11475
This article was adapted from an original article by V.D. Mazurov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article