Namespaces
Variants
Actions

Difference between revisions of "Spin"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
 
Line 1: Line 1:
One of the variables which characterize the interior degrees of freedom of a quantum particle (or of a quantum field). A non-relativistic particle has spin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867401.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867402.png" />) if its state vector takes values in the representation space of an irreducible unitary representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867403.png" /> of the unitary-unimodular group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867404.png" />. The dimension of the representation space is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867405.png" />. In the relativistic case the spin is defined as the quantum number which characterize an irreducible representation of the so-called little group, a subgroup of the [[Poincaré group|Poincaré group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867406.png" />. For a massive particle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867407.png" /> the little group is the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867408.png" />. For a particle with mass zero the little group is the Euclidean group of the plane. In this case one has, to avoid continuous spin, to restrict to those representations of the little group which are one-dimensional and which are labelled with the quantum number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s0867409.png" />, the so-called helicity. The helicity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s08674010.png" /> takes values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086740/s08674011.png" />. The dimension of the representation space equals one in this case.
+
One of the variables which characterize the interior degrees of freedom of a quantum particle (or of a quantum field). A non-relativistic particle has spin $s$ ($s = 0, 1/2, 1, 3/2, 2, \ldots$) if its state vector takes values in the representation space of an irreducible unitary representations $D^{(s)}$ of the unitary-unimodular group $\mathrm{SU}(2)$. The dimension of the representation space is $2s+1$. In the relativistic case the spin is defined as the quantum number which characterizes an irreducible representation of the so-called little group, a subgroup of the [[Poincaré group]] $P_+^\uparrow$. For a massive particle ($m>0$) the little group is the group $\mathrm{SU}(2)$. For a particle with mass zero the little group is the Euclidean group of the plane. In this case one has, to avoid continuous spin, to restrict to those representations of the little group which are one-dimensional and which are labelled with the quantum number $\lambda$, the so-called helicity. The helicity $\lambda$ takes values $\lambda = 0, 1/2, 1, 3/2, 2, \ldots$. The dimension of the representation space equals one in this case.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Quantum mechanics" , Pergamon  (1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Gel'fand,  R.A. Minlos,  Z.Ya. Shapiro,  "Representations of the rotation and the Lorentz groups and their applications" , Pergamon  (1963)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Quantum mechanics" , Pergamon  (1965)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Gel'fand,  R.A. Minlos,  Z.Ya. Shapiro,  "Representations of the rotation and the Lorentz groups and their applications" , Pergamon  (1963)  (Translated from Russian)</TD></TR>
 +
</table>
  
 
====Comments====
 
====Comments====
Line 8: Line 11:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.P. Wigner,  "On unitary representations of the inhomogeneous Lorentz group"  ''Ann. of Math.'' , '''40'''  (1939)  pp. 149</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.S. Wightman,  "L'invariance dans la mécanique relativiste" , ''Relations de Dispersion et Particules Elémentaires'' , Hermann &amp; Wiley  (1960)  pp. 159–226</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Weinberg,  "Feynman rules for any spin"  ''Phys. Rev.'' , '''133'''  (1964)  pp. B1318-B1331</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Weinberg,  "Feynman rules for any spin II"  ''Phys. Rev.'' , '''134'''  (1964)  pp. B882-B896</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  E.P. Wigner,  "On unitary representations of the inhomogeneous Lorentz group"  ''Ann. of Math.'' , '''40'''  (1939)  pp. 149</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  A.S. Wightman,  "L'invariance dans la mécanique relativiste" , ''Relations de Dispersion et Particules Elémentaires'' , Hermann &amp; Wiley  (1960)  pp. 159–226</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  S. Weinberg,  "Feynman rules for any spin"  ''Phys. Rev.'' , '''133'''  (1964)  pp. B1318-B1331</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Weinberg,  "Feynman rules for any spin II"  ''Phys. Rev.'' , '''134'''  (1964)  pp. B882-B896</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 19:55, 12 January 2017

One of the variables which characterize the interior degrees of freedom of a quantum particle (or of a quantum field). A non-relativistic particle has spin $s$ ($s = 0, 1/2, 1, 3/2, 2, \ldots$) if its state vector takes values in the representation space of an irreducible unitary representations $D^{(s)}$ of the unitary-unimodular group $\mathrm{SU}(2)$. The dimension of the representation space is $2s+1$. In the relativistic case the spin is defined as the quantum number which characterizes an irreducible representation of the so-called little group, a subgroup of the Poincaré group $P_+^\uparrow$. For a massive particle ($m>0$) the little group is the group $\mathrm{SU}(2)$. For a particle with mass zero the little group is the Euclidean group of the plane. In this case one has, to avoid continuous spin, to restrict to those representations of the little group which are one-dimensional and which are labelled with the quantum number $\lambda$, the so-called helicity. The helicity $\lambda$ takes values $\lambda = 0, 1/2, 1, 3/2, 2, \ldots$. The dimension of the representation space equals one in this case.

References

[1] L.D. Landau, E.M. Lifshitz, "Quantum mechanics" , Pergamon (1965) (Translated from Russian)
[2] I.M. Gel'fand, R.A. Minlos, Z.Ya. Shapiro, "Representations of the rotation and the Lorentz groups and their applications" , Pergamon (1963) (Translated from Russian)

Comments

References

[a1] E.P. Wigner, "On unitary representations of the inhomogeneous Lorentz group" Ann. of Math. , 40 (1939) pp. 149
[a2] A.S. Wightman, "L'invariance dans la mécanique relativiste" , Relations de Dispersion et Particules Elémentaires , Hermann & Wiley (1960) pp. 159–226
[a3] S. Weinberg, "Feynman rules for any spin" Phys. Rev. , 133 (1964) pp. B1318-B1331
[a4] S. Weinberg, "Feynman rules for any spin II" Phys. Rev. , 134 (1964) pp. B882-B896
How to Cite This Entry:
Spin. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spin&oldid=40173