Namespaces
Variants
Actions

Difference between revisions of "Spectral theory of compact operators"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 22 formulas out of 22 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 22 formulas, 22 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''Riesz theory of compact operators''
 
''Riesz theory of compact operators''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304701.png" /> be a complex [[Banach space|Banach space]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304702.png" /> a [[Compact operator|compact operator]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304703.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304704.png" />, the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304705.png" />, is countable and has no cluster points except, possibly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304706.png" />. Every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304707.png" /> is an eigenvalue, and a pole of the resolvent function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304708.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304709.png" /> be the order of the pole <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047010.png" />. For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047012.png" /> is closed, and this range is constant for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047013.png" />. The null space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047014.png" /> is finite dimensional and constant for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047015.png" />. The spectral projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047016.png" /> (the Riesz projector, see [[Riesz decomposition theorem|Riesz decomposition theorem]]) has non-zero finite-dimensional range, equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047017.png" />, and its null space is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047018.png" />. Finally, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047019.png" />.
+
Let $X$ be a complex [[Banach space|Banach space]] and $T$ a [[Compact operator|compact operator]] on $X$. Then $\sigma ( T )$, the spectrum of $T$, is countable and has no cluster points except, possibly, $0$. Every $0 \neq \lambda \in \sigma ( T )$ is an eigenvalue, and a pole of the resolvent function $\lambda \mapsto ( T - \lambda I ) ^ { - 1 }$. Let $\nu ( \lambda )$ be the order of the pole $\lambda$. For each $n \in \mathbf N$, $( T - \lambda I ) ^ { n } X$ is closed, and this range is constant for $n \geq \nu ( \lambda )$. The null space $N ( ( T - \lambda I ) ^ { n } )$ is finite dimensional and constant for $n \geq \nu ( \lambda )$. The spectral projection $E ( \lambda )$ (the Riesz projector, see [[Riesz decomposition theorem|Riesz decomposition theorem]]) has non-zero finite-dimensional range, equal to $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$, and its null space is $( T - \lambda l ) ^ { \nu ( \lambda ) } X$. Finally, $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$.
  
The respective integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047021.png" /> are called the index and the algebraic multiplicity of the eigenvalue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047022.png" />.
+
The respective integers $\nu ( \lambda )$ and $\operatorname { dim } ( E ( \lambda ) X )$ are called the index and the algebraic multiplicity of the eigenvalue $\lambda \neq 0$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.R. Dowson,  "Spectral theory of linear operators" , Acad. Press  (1978)  pp. 45ff.</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators I: General theory" , Interscience  (1964)  pp. Sect. VII.4</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  H.R. Dowson,  "Spectral theory of linear operators" , Acad. Press  (1978)  pp. 45ff.</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators I: General theory" , Interscience  (1964)  pp. Sect. VII.4</td></tr></table>

Latest revision as of 17:00, 1 July 2020

Riesz theory of compact operators

Let $X$ be a complex Banach space and $T$ a compact operator on $X$. Then $\sigma ( T )$, the spectrum of $T$, is countable and has no cluster points except, possibly, $0$. Every $0 \neq \lambda \in \sigma ( T )$ is an eigenvalue, and a pole of the resolvent function $\lambda \mapsto ( T - \lambda I ) ^ { - 1 }$. Let $\nu ( \lambda )$ be the order of the pole $\lambda$. For each $n \in \mathbf N$, $( T - \lambda I ) ^ { n } X$ is closed, and this range is constant for $n \geq \nu ( \lambda )$. The null space $N ( ( T - \lambda I ) ^ { n } )$ is finite dimensional and constant for $n \geq \nu ( \lambda )$. The spectral projection $E ( \lambda )$ (the Riesz projector, see Riesz decomposition theorem) has non-zero finite-dimensional range, equal to $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$, and its null space is $( T - \lambda l ) ^ { \nu ( \lambda ) } X$. Finally, $\operatorname { dim } ( E ( \lambda ) X ) \geq \nu ( \lambda ) \geq 1$.

The respective integers $\nu ( \lambda )$ and $\operatorname { dim } ( E ( \lambda ) X )$ are called the index and the algebraic multiplicity of the eigenvalue $\lambda \neq 0$.

References

[a1] H.R. Dowson, "Spectral theory of linear operators" , Acad. Press (1978) pp. 45ff.
[a2] N. Dunford, J.T. Schwartz, "Linear operators I: General theory" , Interscience (1964) pp. Sect. VII.4
How to Cite This Entry:
Spectral theory of compact operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_theory_of_compact_operators&oldid=18215
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article