Namespaces
Variants
Actions

Spectral semi-invariant

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


spectral cumulant

One of the characteristics of a stationary stochastic process. Let $ X ( t) $, $ - \infty < t < \infty $, be a real stationary stochastic process for which $ {\mathsf E} | X ( t) | ^ {n} \leq C < \infty $. The semi-invariants (cf. Semi-invariant) of this process,

$$ S ^ {( n)} ( t _ {1} \dots t _ {n} ) = \ $$

$$ \left . = \frac{i ^ {- n} \partial ^ {n} }{\partial u _ {1} \dots \partial u _ {n} } \mathop{\rm log} {\mathsf E} e ^ {i ( u _ {1} X ( t _ {1} ) + \dots + u _ {n} X ( t _ {n} ) ) } \right | _ {u _ {1} = \dots = u _ {n} = 0 } , $$

are connected with the moments

$$ M ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ {\mathsf E} \{ X ( t _ {1} ) \dots X ( t _ {n} ) \} $$

by the relations

$$ S ^ {( n)} ( I) = \sum _ {\cup _ {p= 1} ^ {q} I _ {p} = I } ( - 1 ) ^ {q- 1} ( q - 1 ) ! \prod _ { p= 1} ^ { q } M ^ {( p)} ( I _ {p} ) , $$

$$ M ^ {( n)} ( I) = \sum _ {\cup _ {p= 1} ^ {q} I _ {p} = I } \prod _ { p= 1} ^ { q } S ^ {( p)} ( I _ {p} ) , $$

where

$$ I = ( t _ {1}, \dots, t _ {n} ) ,\ \ I _ {p} = ( t _ {i _ {1} }, \dots, t _ {i _ {p} } ) \subseteq I , $$

and the summation is over all partitions of $ I $ into disjoint subsets $ I _ {p} $. It is said that $ X ( t) \in \Phi ^ {( n)} $ if, for all $ 1 \leq k \leq n $, there is a complex measure of bounded variation $ M ^ {( k)} $ on $ \mathbf R ^ {k} $ such that for all $ t _ {1}, \dots, t _ {n} $,

$$ M ^ {( k)} ( t _ {1}, \dots, t _ {k} ) = \ \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t _ {1} \lambda _ {1} + \dots + t _ {k} \lambda _ {k} ) } M ^ {( k)} ( d \lambda _ {1}, \dots, d \lambda _ {k} ) = $$

$$ = \ \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t , \lambda ) } M ^ {( k)} ( d \lambda ) . $$

A measure $ F ^ { ( n) } $, defined on a system of Borel sets, is called a spectral semi-invariant if, for all $ t _ {1}, \dots, t _ {n} $,

$$ S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ \int\limits _ {\mathbf R ^ {n} } e ^ {i ( t , \lambda ) } F ^ { ( n) } ( d \lambda ) . $$

The measure $ F ^ { ( n) } $ exists and has bounded variation if $ X ( t) \in \Phi ^ {( n)} $. In the case of a stationary process $ X ( t) $, the semi-invariants $ S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) $ are invariant under translation:

$$ S ^ {( n)} ( t _ {1} + \tau, \dots, t _ {n} + \tau ) = S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) , $$

and the spectral measures $ F ^ { ( n) } $ and $ M ^ {( n)} $ are concentrated on the manifold $ \lambda _ {1} + \dots + \lambda _ {n} = 0 $. If the measure $ F ^ { ( n) } $ is absolutely continuous with respect to Lebesgue measure on this manifold, then there is a spectral density $ f _ {n} ( \lambda _ {1}, \dots, \lambda _ {n- 1} ) $ of order $ n $, defined by the equations

$$ S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ \int\limits _ {\mathbf R ^ {n- 1}} e ^ { i ( \lambda _ {1} ( t _ {2} - t _ {1} ) + {} \dots + \lambda _ {n- 1} ( t _ {n} - t _ {1} ) ) } \times $$

$$ \times f _ {n} ( \lambda _ {1}, \dots, \lambda _ {n- 1} ) d \lambda , $$

for all $ t _ {1}, \dots, t _ {n} $. In the case of discrete time one must replace $ \mathbf R ^ {( k)} $ in all formulas above by the $ k $-dimensional cube $ - \pi \leq \lambda _ {i} \leq \pi $, $ 1 \leq i \leq k $.

References

[1] Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)
[2] V.P. Leonov, "Some applications of higher semi-invariants to the theory of stationary stochastic processes" , Moscow (1964) (In Russian)
How to Cite This Entry:
Spectral semi-invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_semi-invariant&oldid=51963
This article was adapted from an original article by I.G. Zhurbenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article