Namespaces
Variants
Actions

Skorokhod theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Skorokhod representation theorem

Suppose that $ \{ P _ {n} \} _ {n \geq 1 } $ is a sequence of probability measures on a complete and separable metric space $ ( S, {\mathcal S} ) $ that converges weakly (cf. Weak topology) to a probability measure $ P $( that is, $ {\lim\limits } _ {n} \int _ {S} f {dP _ {n} } = \int _ {S} f {dP } $ for any continuous and bounded function $ f $ on $ S $). Then there exists a probability space $ ( \Omega, {\mathcal F}, {\mathsf P} ) $ and $ S $- valued random elements $ \{ X _ {n} \} $, $ X $ with distributions $ \{ P _ {n} \} $ and $ P $, respectively, such that $ X _ {n} $ converges $ {\mathsf P} $- almost surely to $ X $( cf. Convergence, almost-certain).

If $ S = \mathbf R $, the proof of this result reduces to taking for $ \Omega $ the unit interval $ ( 0,1 ) $ with Lebesgue measure and letting $ X _ {n} ( y ) = \inf \{ z : {P _ {n} ( - \infty,z ] \geq y } \} $, and $ X ( y ) = \inf \{ z : {P ( - \infty,z ] \geq y } \} $, for $ y \in ( 0,1 ) $.

In [a1] the theorem has been extended to general separable metric spaces, while in [a4] the result is proved for an arbitrary metric space, assuming that the limit probability $ P $ is concentrated on a separable set. Extensions of this theorem to non-metrizable topological spaces are discussed in [a2].

References

[a1] R.M. Dudley, "Distance of probability measures and random variables" Ann. Math. Stat. , 39 (1968) pp. 1563–1572
[a2] A. Schief, "Almost surely convergent random variables with given laws" Probab. Th. Rel. Fields , 81 (1989) pp. 559–567
[a3] A.V. Skorokhod, "Limit theorems for stochastic processes" Th. Probab. Appl. , 1 (1956) pp. 261–290
[a4] M.J. Wichura, "On the construction of almost uniformly convergent random variables with given weakly convergent image laws" Ann. Math. Stat. , 41 (1970) pp. 284–291
How to Cite This Entry:
Skorokhod theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Skorokhod_theorem&oldid=48732
This article was adapted from an original article by D. Nualart (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article