Namespaces
Variants
Actions

Difference between revisions of "Skew Young tableau"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
Consider two partitions, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101501.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101502.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101503.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101504.png" />. With those partitions one can associate Young diagrams, or Ferrers diagrams (cf. [[Young diagram|Young diagram]]), also denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101505.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101506.png" />. Suppose that each cell of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101507.png" /> is also a cell of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101508.png" />. The set-difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s1101509.png" /> contains exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015010.png" /> cells. It is called a skew Young diagram, or skew Ferrers diagram.
+
{{TEX|done}}
 +
Consider two partitions, $\lambda$ of $n+m$ and $\mu$ of $m$. With those partitions one can associate Young diagrams, or Ferrers diagrams (cf. [[Young diagram|Young diagram]]), also denoted by $\lambda$ and $\mu$. Suppose that each cell of $\mu$ is also a cell of $\lambda$. The set-difference $\lambda/\mu$ contains exactly $n$ cells. It is called a skew Young diagram, or skew Ferrers diagram.
  
Such a diagram can be filled with integers from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015011.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015012.png" /> in increasing order in each row and in each column. This is called a standard skew Young tableau. If repetitions are allowed and if the rows are only non-decreasing, the tableau is called semi-standard. These are generalizations of Young tableaux (cf. [[Young tableau|Young tableau]]).
+
Such a diagram can be filled with integers from $1$ to $n$ in increasing order in each row and in each column. This is called a standard skew Young tableau. If repetitions are allowed and if the rows are only non-decreasing, the tableau is called semi-standard. These are generalizations of Young tableaux (cf. [[Young tableau|Young tableau]]).
  
 
For example,
 
For example,
Line 9: Line 10:
 
Figure: s110150a
 
Figure: s110150a
  
are standard, respectively semi-standard, of shape <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015013.png" />.
+
are standard, respectively semi-standard, of shape $(4,3,2)/(1,1)$.
  
It is possible to define the Schur function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015014.png" /> combinatorially as the generating function of all semi-standard Young tableaux of shape <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015015.png" /> filled with indices of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015016.png" />, as follows.
+
It is possible to define the Schur function $S_\lambda(X)$ combinatorially as the generating function of all semi-standard Young tableaux of shape $\lambda$ filled with indices of elements of $X$, as follows.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015017.png" /> be an alphabet. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015018.png" /> be a semi-standard Young tableau of shape <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015019.png" />, containing entries from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015020.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015021.png" />. The product of the indeterminates whose indices appear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015022.png" /> is a monomial. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015023.png" /> is the sum of those monomials over the set of all possible such tableaux <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015024.png" />.
+
Let $X=\{x_1,\ldots,x_k\}$ be an alphabet. Let $T$ be a semi-standard Young tableau of shape $\lambda$, containing entries from $1$ to $k$. The product of the indeterminates whose indices appear in $T$ is a monomial. Then $S_\lambda(X)$ is the sum of those monomials over the set of all possible such tableaux $T$.
  
When replacing Young tableaux by skew Young tableaux of shape <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015025.png" />, one obtains the skew Schur function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015026.png" />. Those functions have many properties in common with ordinary Schur functions. See [[#References|[a3]]] for Schur functions.
+
When replacing Young tableaux by skew Young tableaux of shape $\lambda/\mu$, one obtains the skew Schur function $S_{\lambda/\mu}(X)$. Those functions have many properties in common with ordinary Schur functions. See [[#References|[a3]]] for Schur functions.
  
This connection between combinatorial (Young tableaux) and algebraic (Schur functions) objects is very fruitful, both for combinatorics and for algebra. For applications to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110150/s11015028.png" />-analysis, cf., e.g., [[#References|[a1]]] and [[#References|[a2]]].
+
This connection between combinatorial (Young tableaux) and algebraic (Schur functions) objects is very fruitful, both for combinatorics and for algebra. For applications to $q$-analysis, cf., e.g., [[#References|[a1]]] and [[#References|[a2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Désarménien,  "Fonctions symétriques associées à des suites classiques de nombres"  ''Ann. Sci. Ecole Normale Sup.'' , '''16'''  (1983)  pp. 231–304</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Désarménien,  D. Foata,  "Fonctions symétriques et séries hypergéométriques basiques multivariées"  ''Bull. Soc. Math. France'' , '''113'''  (1985)  pp. 3–22</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.G. Macdonald,  "Symmetric functions and Hall polynomials" , Clarendon Press  (1995)  (Edition: Second)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Désarménien,  "Fonctions symétriques associées à des suites classiques de nombres"  ''Ann. Sci. Ecole Normale Sup.'' , '''16'''  (1983)  pp. 231–304</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Désarménien,  D. Foata,  "Fonctions symétriques et séries hypergéométriques basiques multivariées"  ''Bull. Soc. Math. France'' , '''113'''  (1985)  pp. 3–22</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.G. Macdonald,  "Symmetric functions and Hall polynomials" , Clarendon Press  (1995)  (Edition: Second)</TD></TR></table>

Revision as of 15:02, 30 July 2014

Consider two partitions, $\lambda$ of $n+m$ and $\mu$ of $m$. With those partitions one can associate Young diagrams, or Ferrers diagrams (cf. Young diagram), also denoted by $\lambda$ and $\mu$. Suppose that each cell of $\mu$ is also a cell of $\lambda$. The set-difference $\lambda/\mu$ contains exactly $n$ cells. It is called a skew Young diagram, or skew Ferrers diagram.

Such a diagram can be filled with integers from $1$ to $n$ in increasing order in each row and in each column. This is called a standard skew Young tableau. If repetitions are allowed and if the rows are only non-decreasing, the tableau is called semi-standard. These are generalizations of Young tableaux (cf. Young tableau).

For example,

Figure: s110150a

are standard, respectively semi-standard, of shape $(4,3,2)/(1,1)$.

It is possible to define the Schur function $S_\lambda(X)$ combinatorially as the generating function of all semi-standard Young tableaux of shape $\lambda$ filled with indices of elements of $X$, as follows.

Let $X=\{x_1,\ldots,x_k\}$ be an alphabet. Let $T$ be a semi-standard Young tableau of shape $\lambda$, containing entries from $1$ to $k$. The product of the indeterminates whose indices appear in $T$ is a monomial. Then $S_\lambda(X)$ is the sum of those monomials over the set of all possible such tableaux $T$.

When replacing Young tableaux by skew Young tableaux of shape $\lambda/\mu$, one obtains the skew Schur function $S_{\lambda/\mu}(X)$. Those functions have many properties in common with ordinary Schur functions. See [a3] for Schur functions.

This connection between combinatorial (Young tableaux) and algebraic (Schur functions) objects is very fruitful, both for combinatorics and for algebra. For applications to $q$-analysis, cf., e.g., [a1] and [a2].

References

[a1] J. Désarménien, "Fonctions symétriques associées à des suites classiques de nombres" Ann. Sci. Ecole Normale Sup. , 16 (1983) pp. 231–304
[a2] J. Désarménien, D. Foata, "Fonctions symétriques et séries hypergéométriques basiques multivariées" Bull. Soc. Math. France , 113 (1985) pp. 3–22
[a3] I.G. Macdonald, "Symmetric functions and Hall polynomials" , Clarendon Press (1995) (Edition: Second)
How to Cite This Entry:
Skew Young tableau. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Skew_Young_tableau&oldid=14010
This article was adapted from an original article by J. Désarménien (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article