Namespaces
Variants
Actions

Difference between revisions of "Semi-simple matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX done)
m (typo)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
A square [[matrix]] over a field $F$ [[Similar matrices|similar]] to a matrix in block diagonal form $\mathrm{diag}[D_1,\ldots,D_k]$, where each $D_i$ is a matrix over $F$ whose [[characteristic polynomial]] is irreducible in $F[X]$, $j=1,\ldots,l$ (cf. [[Irreducible polynomial]]). For a matrix $A$ over a field $F$, the following three statements are equivalent: 1) $A$ is semi-simple; 2) the [[Minimal polynomial of a matrix|minimal polynomial]] of $A$ has no multiple factors in $F[X]$; and 3) the algebra $F[A]$ is a [[semi-simple algebra]].
+
A square [[matrix]] over a field $F$ [[Similar matrices|similar]] to a matrix in block diagonal form $\mathrm{diag}[D_1,\ldots,D_k]$, where each $D_i$ is a matrix over $F$ whose [[characteristic polynomial]] is irreducible in $F[X]$, $j=1,\ldots,k$ (cf. [[Irreducible polynomial]]). For a matrix $A$ over a field $F$, the following three statements are equivalent: 1) $A$ is semi-simple; 2) the [[Minimal polynomial of a matrix|minimal polynomial]] of $A$ has no multiple factors in $F[X]$; and 3) the algebra $F[A]$ is a [[semi-simple algebra]].
  
 
If $F$ is a [[perfect field]], then a semi-simple matrix over $F$ is similar to a diagonal matrix over a certain extension of $F$. For any square matrix $A$ over a perfect field there is a unique representation in the form $A = A_S + A_N$, where $A_S$ is a semi-simple matrix, $A_N$ is nilpotent and $A_SA_N = A_NA_S$; the matrices $A_S$ and $A_N$ belong to the algebra $F[A]$.
 
If $F$ is a [[perfect field]], then a semi-simple matrix over $F$ is similar to a diagonal matrix over a certain extension of $F$. For any square matrix $A$ over a perfect field there is a unique representation in the form $A = A_S + A_N$, where $A_S$ is a semi-simple matrix, $A_N$ is nilpotent and $A_SA_N = A_NA_S$; the matrices $A_S$ and $A_N$ belong to the algebra $F[A]$.
Line 7: Line 7:
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Algèbre" , ''Eléments de mathématiques'' , '''2''' , Hermann  (1959)</TD></TR>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Algèbre" , ''Eléments de mathématiques'' , '''2''' , Hermann  (1959)</TD></TR>
 
</table>
 
</table>
 +
 +
 +
====Comment====
 +
A [[semi-simple endomorphism]] $\alpha$ of a finite-dimensional vector space $V$ over a field is one for which the matrix of $\alpha$ with respect to some, and hence every, basis of $V$ is semi-simple. 
  
 
{{TEX|done}}
 
{{TEX|done}}

Latest revision as of 18:07, 12 November 2017

A square matrix over a field $F$ similar to a matrix in block diagonal form $\mathrm{diag}[D_1,\ldots,D_k]$, where each $D_i$ is a matrix over $F$ whose characteristic polynomial is irreducible in $F[X]$, $j=1,\ldots,k$ (cf. Irreducible polynomial). For a matrix $A$ over a field $F$, the following three statements are equivalent: 1) $A$ is semi-simple; 2) the minimal polynomial of $A$ has no multiple factors in $F[X]$; and 3) the algebra $F[A]$ is a semi-simple algebra.

If $F$ is a perfect field, then a semi-simple matrix over $F$ is similar to a diagonal matrix over a certain extension of $F$. For any square matrix $A$ over a perfect field there is a unique representation in the form $A = A_S + A_N$, where $A_S$ is a semi-simple matrix, $A_N$ is nilpotent and $A_SA_N = A_NA_S$; the matrices $A_S$ and $A_N$ belong to the algebra $F[A]$.

References

[1] N. Bourbaki, "Algèbre" , Eléments de mathématiques , 2 , Hermann (1959)


Comment

A semi-simple endomorphism $\alpha$ of a finite-dimensional vector space $V$ over a field is one for which the matrix of $\alpha$ with respect to some, and hence every, basis of $V$ is semi-simple.

How to Cite This Entry:
Semi-simple matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-simple_matrix&oldid=42278
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article