Namespaces
Variants
Actions

Semi-ring

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 16Y60 [MSN][ZBL]

A non-empty set $S$ with two associative binary operations $+$ and $\cdot$, satisfying the distributive laws $$ (a+b) \cdot c = a\cdot c + b \cdot c $$ and $$ a \cdot (b+c) = a\cdot b + a\cdot c \ . $$ In most cases one also assumes that the addition is commutative and that there exists a zero element $0$ such that $a + 0 = a$ for every $a \in S$. The most important classes of semi-rings are rings and distributive lattices. If there is a multiplicative unit element 1, the two classes are combined by the condition $$ \forall x \, \exists y \ x+y=1 \ . $$ The non-negative integers with the usual operations provide an example of a semi-ring that does not satisfy this condition.

Comments

The term "exotic" semi-rings has been used to describe subsets of the real numbers with $\min$ or $\max$ as ${+}$ and addition as ${\star}$. These are thus idempotent semi-rings. Examples include the tropical semiring on $\mathbf{N} \cup \{\infty\}$ with operations ${\min},\, +$.

An additive zero in a semiring $S$ is an element $a$ such that $a+x = x+a = x$ for all $x$; a multiplicative zero is an element $m$ such that $m \cdot x = x \cdot m = m$ for all $x$. A double zero is an element which is both an additive zero and a multiplicative zero.

If the additive semigroup of a semiring $S$ is commutative and satisfies the cancellative property $a + c = b + c \Rightarrow a = b$ for all $c$, then the additive semigroup embeds in its Grothendieck group $R$ and the multiplication $\cdot$ extends to $R$, giving it a ring structure: the Grothendieck ring of $S$. The Grothendieck ring of a finite group $G$ over a field $K$ is the ring constructed in this way from the semiring of isomorphism classes of modules over the group ring $K[G]$ with direct sum and tensor product as the operations.

References

  • K. Glazek, A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences: With Complete Bibliography Springer (2013) ISBN 9401599645
  • U. Hebisch, H.J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science World Scientific (1998) ISBN 9814495697 Zbl 0934.16046
  • Serge Lang Algebra (3rd rev. ed.) Graduate Texts in Mathematics 211 Springer (2002) Zbl 0984.00001
How to Cite This Entry:
Semi-ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-ring&oldid=53791
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article