Namespaces
Variants
Actions

Difference between revisions of "Schwarz function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
s0835301.png
 +
$#A+1 = 35 n = 0
 +
$#C+1 = 35 : ~/encyclopedia/old_files/data/S083/S.0803530 Schwarz function,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Riemann–Schwarz function''
 
''Riemann–Schwarz function''
  
An [[Analytic function|analytic function]] realizing a [[Conformal mapping|conformal mapping]] of a triangle bounded by arcs of circles onto the upper half-plane (or unit disc) that remains single-valued under unrestricted [[Analytic continuation|analytic continuation]]. A Schwarz function is an [[Automorphic function|automorphic function]]. The corresponding group depends on the form of the mapped triangle. The requirement of single-valuedness is satisfied only in the case when the angles of the triangle are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835301.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835302.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835303.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835304.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835305.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835306.png" /> are some specially-chosen natural numbers.
+
An [[Analytic function|analytic function]] realizing a [[Conformal mapping|conformal mapping]] of a triangle bounded by arcs of circles onto the upper half-plane (or unit disc) that remains single-valued under unrestricted [[Analytic continuation|analytic continuation]]. A Schwarz function is an [[Automorphic function|automorphic function]]. The corresponding group depends on the form of the mapped triangle. The requirement of single-valuedness is satisfied only in the case when the angles of the triangle are $  \pi / \nu _ {1} $,  
 +
$  \pi / \nu _ {2} $,  
 +
$  \pi / \nu _ {3} $,  
 +
where $  \nu _ {1} $,  
 +
$  \nu _ {2} $
 +
and $  \nu _ {3} $
 +
are some specially-chosen natural numbers.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835307.png" />, one obtains rectilinear triangles for which the only possibilities are: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835308.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s0835309.png" /> (a semi-strip); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353012.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353014.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353015.png" />. In all these cases the Schwarz functions are represented by [[Trigonometric functions|trigonometric functions]] or [[Weierstrass elliptic functions|Weierstrass elliptic functions]] and are automorphic; their group is the group of motions of the Euclidean plane.
+
If $  1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} = 1 $,  
 +
one obtains rectilinear triangles for which the only possibilities are: $  \nu _ {1} = \nu _ {2} = 2 $,  
 +
$  \nu _ {3} = \infty $(
 +
a semi-strip); $  \nu _ {1} = 2 $,  
 +
$  \nu _ {2} = 3 $,  
 +
$  \nu _ {3} = 6 $;  
 +
$  \nu _ {1} = 2 $,  
 +
$  \nu _ {2} = \nu _ {3} = 4 $;  
 +
$  \nu _ {1} = \nu _ {2} = \nu _ {3} = 3 $.  
 +
In all these cases the Schwarz functions are represented by [[Trigonometric functions|trigonometric functions]] or [[Weierstrass elliptic functions|Weierstrass elliptic functions]] and are automorphic; their group is the group of motions of the Euclidean plane.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353016.png" />, there are the following possibilities: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353018.png" /> arbitrary; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353020.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353023.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353026.png" />. In all these cases the Schwarz functions are rational automorphic functions; their group is a finite group of motions of a sphere. As a result of the relationship between this group and regular polygons, such Schwarz functions are also called polyhedral functions.
+
If $  1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} > 1 $,  
 +
there are the following possibilities: $  \nu _ {1} = \nu _ {2} = 2 $,  
 +
$  \nu _ {3} $
 +
arbitrary; $  \nu _ {1} = 2 $,  
 +
$  \nu _ {2} = \nu _ {3} = 3 $;  
 +
$  \nu _ {1} = 2 $,  
 +
$  \nu _ {2} = 3 $,  
 +
$  \nu _ {3} = 4 $;  
 +
$  \nu _ {1} = 2 $,  
 +
$  \nu _ {2} = 3 $,  
 +
$  \nu _ {3} = 5 $.  
 +
In all these cases the Schwarz functions are rational automorphic functions; their group is a finite group of motions of a sphere. As a result of the relationship between this group and regular polygons, such Schwarz functions are also called polyhedral functions.
  
Finally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353027.png" />, then infinitely-many different triangles are possible, since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353028.png" /> may increase indefinitely. Here, the Schwarz functions are automorphic functions with a continuous singular curve (circle or straight line). In particular, the cases of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353032.png" /> (a circular triangle with zero angles) lead to the modular functions (cf. [[Modular function|Modular function]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353034.png" />, respectively. The Schwarz functions were studied by H.A. Schwarz [[#References|[1]]].
+
Finally, if $  1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} < 1 $,  
 +
then infinitely-many different triangles are possible, since $  \nu _ {1} , \nu _ {2} , \nu _ {3} $
 +
may increase indefinitely. Here, the Schwarz functions are automorphic functions with a continuous singular curve (circle or straight line). In particular, the cases of $  \nu _ {1} = 2 $,  
 +
$  \nu _ {2} = 3 $,  
 +
$  \nu _ {3} = \infty $
 +
and $  \nu _ {1} = \nu _ {2} = \nu _ {3} = \infty $(
 +
a circular triangle with zero angles) lead to the modular functions (cf. [[Modular function|Modular function]]) $  J( z) $
 +
and $  \lambda ( z) $,  
 +
respectively. The Schwarz functions were studied by H.A. Schwarz [[#References|[1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H.A. Schwarz,  "Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt (nebst zwei Figurtafeln)"  ''J. Reine Angew. Math.'' , '''75'''  (1873)  pp. 292–335</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.V. Golubev,  "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft.  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.R. Ford,  "Automorphic functions" , Chelsea, reprint  (1951)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H.A. Schwarz,  "Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt (nebst zwei Figurtafeln)"  ''J. Reine Angew. Math.'' , '''75'''  (1873)  pp. 292–335</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.V. Golubev,  "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft.  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.R. Ford,  "Automorphic functions" , Chelsea, reprint  (1951)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In the case of a rectilinear triangle the functions are also called Schwarz triangle functions (cf. [[#References|[a1]]], [[#References|[a2]]]) or Schwarzian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083530/s08353035.png" />-functions [[#References|[a3]]]. These functions can be written as the quotient of two independent solutions of a [[Hypergeometric equation|hypergeometric equation]] (with explicit expressions for its coefficients in terms of the triangle angles), cf. [[#References|[a3]]], p. 206. Conformal mapping of circular polygons to a half-plane is also discussed in [[#References|[a3]]] (Chapt. V, Sect. 7).
+
In the case of a rectilinear triangle the functions are also called Schwarz triangle functions (cf. [[#References|[a1]]], [[#References|[a2]]]) or Schwarzian s $-
 +
functions [[#References|[a3]]]. These functions can be written as the quotient of two independent solutions of a [[Hypergeometric equation|hypergeometric equation]] (with explicit expressions for its coefficients in terms of the triangle angles), cf. [[#References|[a3]]], p. 206. Conformal mapping of circular polygons to a half-plane is also discussed in [[#References|[a3]]] (Chapt. V, Sect. 7).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.V. Ahlfors,  "Complex analysis" , McGraw-Hill  (1979)  pp. 241</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Carathéodory,  "Theory of functions" , '''2''' , Chelsea, reprint  (1981)  pp. Part 7, Chapts. 2–3</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Z. Nehari,  "Conformal mapping" , Dover, reprint  (1975)  pp. 2</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.V. Ahlfors,  "Complex analysis" , McGraw-Hill  (1979)  pp. 241</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Carathéodory,  "Theory of functions" , '''2''' , Chelsea, reprint  (1981)  pp. Part 7, Chapts. 2–3</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Z. Nehari,  "Conformal mapping" , Dover, reprint  (1975)  pp. 2</TD></TR></table>

Latest revision as of 08:12, 6 June 2020


Riemann–Schwarz function

An analytic function realizing a conformal mapping of a triangle bounded by arcs of circles onto the upper half-plane (or unit disc) that remains single-valued under unrestricted analytic continuation. A Schwarz function is an automorphic function. The corresponding group depends on the form of the mapped triangle. The requirement of single-valuedness is satisfied only in the case when the angles of the triangle are $ \pi / \nu _ {1} $, $ \pi / \nu _ {2} $, $ \pi / \nu _ {3} $, where $ \nu _ {1} $, $ \nu _ {2} $ and $ \nu _ {3} $ are some specially-chosen natural numbers.

If $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} = 1 $, one obtains rectilinear triangles for which the only possibilities are: $ \nu _ {1} = \nu _ {2} = 2 $, $ \nu _ {3} = \infty $( a semi-strip); $ \nu _ {1} = 2 $, $ \nu _ {2} = 3 $, $ \nu _ {3} = 6 $; $ \nu _ {1} = 2 $, $ \nu _ {2} = \nu _ {3} = 4 $; $ \nu _ {1} = \nu _ {2} = \nu _ {3} = 3 $. In all these cases the Schwarz functions are represented by trigonometric functions or Weierstrass elliptic functions and are automorphic; their group is the group of motions of the Euclidean plane.

If $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} > 1 $, there are the following possibilities: $ \nu _ {1} = \nu _ {2} = 2 $, $ \nu _ {3} $ arbitrary; $ \nu _ {1} = 2 $, $ \nu _ {2} = \nu _ {3} = 3 $; $ \nu _ {1} = 2 $, $ \nu _ {2} = 3 $, $ \nu _ {3} = 4 $; $ \nu _ {1} = 2 $, $ \nu _ {2} = 3 $, $ \nu _ {3} = 5 $. In all these cases the Schwarz functions are rational automorphic functions; their group is a finite group of motions of a sphere. As a result of the relationship between this group and regular polygons, such Schwarz functions are also called polyhedral functions.

Finally, if $ 1/ \nu _ {1} + 1/ \nu _ {2} + 1/ \nu _ {3} < 1 $, then infinitely-many different triangles are possible, since $ \nu _ {1} , \nu _ {2} , \nu _ {3} $ may increase indefinitely. Here, the Schwarz functions are automorphic functions with a continuous singular curve (circle or straight line). In particular, the cases of $ \nu _ {1} = 2 $, $ \nu _ {2} = 3 $, $ \nu _ {3} = \infty $ and $ \nu _ {1} = \nu _ {2} = \nu _ {3} = \infty $( a circular triangle with zero angles) lead to the modular functions (cf. Modular function) $ J( z) $ and $ \lambda ( z) $, respectively. The Schwarz functions were studied by H.A. Schwarz [1].

References

[1] H.A. Schwarz, "Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt (nebst zwei Figurtafeln)" J. Reine Angew. Math. , 75 (1873) pp. 292–335
[2] V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian)
[3] L.R. Ford, "Automorphic functions" , Chelsea, reprint (1951)

Comments

In the case of a rectilinear triangle the functions are also called Schwarz triangle functions (cf. [a1], [a2]) or Schwarzian $ s $- functions [a3]. These functions can be written as the quotient of two independent solutions of a hypergeometric equation (with explicit expressions for its coefficients in terms of the triangle angles), cf. [a3], p. 206. Conformal mapping of circular polygons to a half-plane is also discussed in [a3] (Chapt. V, Sect. 7).

References

[a1] L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. 241
[a2] C. Carathéodory, "Theory of functions" , 2 , Chelsea, reprint (1981) pp. Part 7, Chapts. 2–3
[a3] Z. Nehari, "Conformal mapping" , Dover, reprint (1975) pp. 2
How to Cite This Entry:
Schwarz function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schwarz_function&oldid=16946
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article