Namespaces
Variants
Actions

Difference between revisions of "Schur ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 19: Line 19:
 
For each  $  D \subset  G $,  
 
For each  $  D \subset  G $,  
 
let  $  \overline{D}\; = \sum _ {g \in D }  g $
 
let  $  \overline{D}\; = \sum _ {g \in D }  g $
and  $  D  ^ {-} 1 = \{ {g  ^ {-} 1 } : {g \in D } \} $.  
+
and  $  D  ^ {-1} = \{ {g  ^ {-1} } : {g \in D } \} $.  
 
Suppose that for each  $  D \in \pi $,  
 
Suppose that for each  $  D \in \pi $,  
$  D  ^ {-} 1 \in \pi $,  
+
$  D  ^ {-1} \in \pi $,  
 
and for all  $  D _ {i} , D _ {j} \in \pi $,  
 
and for all  $  D _ {i} , D _ {j} \in \pi $,  
$  \overline{D}\; _ {i} \overline{D}\; _ {j} = \sum _ {k=} ^ {n} c _ {ij}  ^ {k} \overline{D}\; _ {k} $
+
$  \overline{D}\; _ {i} \overline{D}\; _ {j} = \sum _ {k=1} ^ {n} c _ {ij}  ^ {k} \overline{D}\; _ {k} $
 
for certain  $  c _ {ij}  ^ {k} \in \mathbf Z $.  
 
for certain  $  c _ {ij}  ^ {k} \in \mathbf Z $.  
 
Then the  $  \overline{D}\; _ {1} \dots \overline{D}\; _ {n} $
 
Then the  $  \overline{D}\; _ {1} \dots \overline{D}\; _ {n} $
Line 33: Line 33:
 
of  $  \mathbf Z [ G] $
 
of  $  \mathbf Z [ G] $
 
is a Schur ring over  $  G $
 
is a Schur ring over  $  G $
if and only if  $  x  ^ {(-} 1) \in S $
+
if and only if  $  x  ^ {(-1 )} \in S $
 
for all  $  x \in S $(
 
for all  $  x \in S $(
where  $  x  ^ {(-} 1) = \sum a _ {g} g  ^ {-} 1 $
+
where  $  x  ^ {(- 1)} = \sum a _ {g} g  ^ {-1} $
 
if  $  x = \sum a _ {g} g $)  
 
if  $  x = \sum a _ {g} g $)  
 
and it is closed under the Hadamard product  $  ( \sum a _ {g} g ) ( \sum b _ {g} g ) = \sum a _ {g} b _ {g} g $.
 
and it is closed under the Hadamard product  $  ( \sum a _ {g} g ) ( \sum b _ {g} g ) = \sum a _ {g} b _ {g} g $.
  
 
A symmetric Schur ring  $  S $
 
A symmetric Schur ring  $  S $
is a Schur ring for which  $  x  ^ {(-} 1) = x $
+
is a Schur ring for which  $  x  ^ {(-1)} = x $
 
for all  $  x \in S $.
 
for all  $  x \in S $.
  

Latest revision as of 18:57, 11 January 2024


A certain kind of subring of the group algebra $ \mathbf Z [ G] $ of a group $ G $.

Let $ G $ be a finite group and $ \pi = ( D _ {1} \dots D _ {n} ) $ a partition of $ G $. For each $ D \subset G $, let $ \overline{D}\; = \sum _ {g \in D } g $ and $ D ^ {-1} = \{ {g ^ {-1} } : {g \in D } \} $. Suppose that for each $ D \in \pi $, $ D ^ {-1} \in \pi $, and for all $ D _ {i} , D _ {j} \in \pi $, $ \overline{D}\; _ {i} \overline{D}\; _ {j} = \sum _ {k=1} ^ {n} c _ {ij} ^ {k} \overline{D}\; _ {k} $ for certain $ c _ {ij} ^ {k} \in \mathbf Z $. Then the $ \overline{D}\; _ {1} \dots \overline{D}\; _ {n} $ form the basis (over $ \mathbf Z $) of a subring of $ \mathbf Z [ G] $. These subrings are called Schur rings. A unitary Schur ring is one which contains the unit element of $ \mathbf Z [ G] $.

A subring $ S $ of $ \mathbf Z [ G] $ is a Schur ring over $ G $ if and only if $ x ^ {(-1 )} \in S $ for all $ x \in S $( where $ x ^ {(- 1)} = \sum a _ {g} g ^ {-1} $ if $ x = \sum a _ {g} g $) and it is closed under the Hadamard product $ ( \sum a _ {g} g ) ( \sum b _ {g} g ) = \sum a _ {g} b _ {g} g $.

A symmetric Schur ring $ S $ is a Schur ring for which $ x ^ {(-1)} = x $ for all $ x \in S $.

Historically, Schur rings were first studied by I. Schur [a1] and H. Wielandt [a2], who coined the name, in connection with the study of permutation groups; cf. [a3][a5] for applications of Schur rings to group theory. More recently it was discovered that they are also related to certain combinatorial structures, such as association schemes and strongly regular graphs, [a6], [a7].

References

[a1] I. Schur, "Zur Theorie der einfach transitiven Permutationsgruppen" Sitzungsber. Preuss. Akad. Wissenschaft. Berlin. Phys.-Math. Kl. (1933) pp. 598–623
[a2] H. Wielandt, "Zur Theorie der einfach transitiven Permutationsgruppen II" Math. Z. , 52 (1949) pp. 384–393
[a3] O. Tamaschke, "Schur-Ringe" , B.I. Wissenschaftsverlag Mannheim (1970)
[a4] W.R. Scott, "Group theory" , Prentice-Hall (1964)
[a5] H. Wielandt, "Finite permutation groups" , Acad. Press (1964) (Translated from German)
[a6] E. Bannai, T. Ito, "Algebraic combinatorics I: Association schemes" , Benjamin/Cummings (1984)
[a7] S.L. Ma, "On association schemes, Schur rings, strongly regular graphs and partial difference sets" Ars Comb. , 27 (1989) pp. 211–220
How to Cite This Entry:
Schur ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_ring&oldid=54972