Namespaces
Variants
Actions

Difference between revisions of "Schur Q-function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 42 formulas out of 42 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
A symmetric function introduced by I. Schur [[#References|[a6]]] in 1911 in the construction of the irreducible spin characters of the symmetric groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301402.png" /> (cf. [[Projective representations of symmetric and alternating groups|Projective representations of symmetric and alternating groups]]). Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301403.png" />-functions are analogous to the Schur functions, which play the same role for linear characters (cf. [[Schur functions in algebraic combinatorics|Schur functions in algebraic combinatorics]]). In fact, both are special cases of Hall–Littlewood functions discovered by D.E. Littlewood [[#References|[a3]]], but see [[#References|[a4]]] for a description of their development and subsequent generalizations, for example, Macdonald polynomials.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
There are by now (as of 2000) several other definitions; the original by Schur [[#References|[a6]]] was in terms of Pfaffians (cf. [[Pfaffian|Pfaffian]]), a modern version of his work is [[#References|[a2]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301404.png" /> be a set of variables (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301405.png" />); then
+
Out of 42 formulas, 42 were replaced by TEX code.-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301406.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
{{TEX|semi-auto}}{{TEX|done}}
 +
A symmetric function introduced by I. Schur [[#References|[a6]]] in 1911 in the construction of the irreducible spin characters of the symmetric groups $S _ { n }$ (cf. [[Projective representations of symmetric and alternating groups|Projective representations of symmetric and alternating groups]]). Schur $Q$-functions are analogous to the Schur functions, which play the same role for linear characters (cf. [[Schur functions in algebraic combinatorics|Schur functions in algebraic combinatorics]]). In fact, both are special cases of Hall–Littlewood functions discovered by D.E. Littlewood [[#References|[a3]]], but see [[#References|[a4]]] for a description of their development and subsequent generalizations, for example, Macdonald polynomials.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301407.png" />, define
+
There are by now (as of 2000) several other definitions; the original by Schur [[#References|[a6]]] was in terms of Pfaffians (cf. [[Pfaffian|Pfaffian]]), a modern version of his work is [[#References|[a2]]]. Let $\mathbf{x} = \{ x _ { 1 } , \dots , x _ { l } \}$ be a set of variables ($l \geq n$); then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301408.png" /></td> </tr></table>
+
\begin{equation} \tag{a1} Q ( t ) = \prod _ { i } \frac { 1 + x _ { i } t } { 1 - x _ { i } t } = \sum _ { r \geq 0 } q _ { r } t ^ { r }. \end{equation}
  
and then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301409.png" />, because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014010.png" />, as follows directly from (a1).
+
For $r , s \geq 0$, define
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014011.png" /> is a strict partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014013.png" />, then the matrix
+
\begin{equation*} Q_{( r , s )} = q_ r q _ { s } + 2 \sum _ { i = 1 } ^ { s } ( - 1 ) ^ { i } q_{r + i} q _ { s - i}, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014014.png" /></td> </tr></table>
+
and then $Q _ { ( s , r ) } = - Q _ { ( r , s ) }$, because $\sum _ { i = 0 } ^ { n } ( - 1 ) ^ { i } q _ { i } q _ { n - i }  = 0$, as follows directly from (a1).
  
is skew-symmetric, and the Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014015.png" />-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014016.png" /> is defined as
+
If $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { 2 m } )$ is a strict partition of $n$, where $\lambda _ { 1 } &gt; \ldots &gt; \lambda _ { 2 m } \geq 0$, then the matrix
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014017.png" /></td> </tr></table>
+
\begin{equation*} M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } \rangle } ) \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014018.png" /> stands for the [[Pfaffian|Pfaffian]].
+
is skew-symmetric, and the Schur $Q$-function $Q_\lambda$ is defined as
  
An alternative purely combinatorial definition has been given by J.R. Stembridge [[#References|[a7]]] in terms of shifted (Young) diagrams. These differ from Young diagrams (cf. [[Young diagram|Young diagram]]) in that there is an indentation along the diagonal. Young tableaux are replaced by marked shifted tableaux which are defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014019.png" /> denote the ordered alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014020.png" />; then a marked shifted tableau <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014021.png" /> is a labelling of the nodes of the shifted diagram of shape <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014022.png" /> such that
+
\begin{equation*} Q _ { \lambda } = \operatorname { Pf } ( M _ { \lambda } ), \end{equation*}
 +
 
 +
where $\text{Pf}$ stands for the [[Pfaffian|Pfaffian]].
 +
 
 +
An alternative purely combinatorial definition has been given by J.R. Stembridge [[#References|[a7]]] in terms of shifted (Young) diagrams. These differ from Young diagrams (cf. [[Young diagram|Young diagram]]) in that there is an indentation along the diagonal. Young tableaux are replaced by marked shifted tableaux which are defined as follows. Let $P ^ { \prime }$ denote the ordered alphabet $\{ 1 ^ { \prime } &lt; 1 &lt; 2 ^ { \prime } &lt; 2 &lt; \ldots \}$; then a marked shifted tableau $T$ is a labelling of the nodes of the shifted diagram of shape $\lambda$ such that
  
 
i) the labels weakly increase along each row and down each column;
 
i) the labels weakly increase along each row and down each column;
  
ii) each column contains at most one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014023.png" />, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014024.png" />; and
+
ii) each column contains at most one $k$, for each $k \geq 1$; and
  
iii) each row contains at most one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014025.png" />, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014027.png" /> denotes the number of nodes labelled either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014028.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014029.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014030.png" /> is the content of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014031.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014032.png" />, then
+
iii) each row contains at most one $k ^ { \prime }$, for each $k \geq 1$. If $\gamma _ { k }$ denotes the number of nodes labelled either $k$ or $k ^ { \prime }$, then $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ is the content of $T$ and if $x ^ { T } = x _ { 1 } ^ { \gamma _ { 1 } } x _ { 2 } ^ { \gamma _ { 2 } } \dots$, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014033.png" /></td> </tr></table>
+
\begin{equation*} Q _ { \lambda } = \sum _ { T } x ^ { T } , \end{equation*}
  
summed over all marked shifted tableaux of shape <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014034.png" />. It is a non-trivial task to prove that this is the Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014035.png" />-function. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014036.png" />, then the corresponding shifted diagram and a possible marked shifted tableau are
+
summed over all marked shifted tableaux of shape $\lambda$. It is a non-trivial task to prove that this is the Schur $Q$-function. For example, if $\lambda = ( 4,2,1 )$, then the corresponding shifted diagram and a possible marked shifted tableau are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014037.png" /></td> </tr></table>
+
\begin{equation*} \lambda = \left. \begin{array} { l l l } { \bullet } &amp; { \bullet } &amp; { \bullet } &amp; { \bullet }  \\ { \square } &amp; { \bullet } &amp; { \bullet } &amp; { \square } \\ { \square } &amp; { \square } &amp; { \bullet } &amp; { \square }  \end{array} \right. \end{equation*}
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014038.png" />.
+
and $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$.
  
This combinatorial definition has been a rich source of significant combinatorial results, for example, Stembridge [[#References|[a7]]] has proved an analogue of the Littlewood–Richardson rule that describes the Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014039.png" />-function expansion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014040.png" /> and also gives a purely combinatorial proof for the Murnaghan–Nakayama rule for computing the irreducible spin characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014041.png" /> (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]). All of this is based on a shifted version of the Robinson–Schensted–Knuth correspondence given independently by B.E. Sagan [[#References|[a5]]] and D.R. Rowley (cf. also [[Robinson–Schensted correspondence|Robinson–Schensted correspondence]]).
+
This combinatorial definition has been a rich source of significant combinatorial results, for example, Stembridge [[#References|[a7]]] has proved an analogue of the Littlewood–Richardson rule that describes the Schur $Q$-function expansion of $Q  _ {\lambda} Q _ { \mu }$ and also gives a purely combinatorial proof for the Murnaghan–Nakayama rule for computing the irreducible spin characters of $S _ { n }$ (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]). All of this is based on a shifted version of the Robinson–Schensted–Knuth correspondence given independently by B.E. Sagan [[#References|[a5]]] and D.R. Rowley (cf. also [[Robinson–Schensted correspondence|Robinson–Schensted correspondence]]).
  
Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014042.png" />-functions also arise naturally in other contexts, for example, the characters of irreducible representations of the queer Lie super-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014043.png" />, the cohomology classes dual to Schubert cycles in isotropic Grassmannians and in polynomial solutions of the BKP-hierarchy of partial differential equations.
+
Schur $Q$-functions also arise naturally in other contexts, for example, the characters of irreducible representations of the queer Lie super-algebra $Q ( n )$, the cohomology classes dual to Schubert cycles in isotropic Grassmannians and in polynomial solutions of the BKP-hierarchy of partial differential equations.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.N. Hoffman,  J.F. Humphreys,  "Projective representations of the symmetric groups" , Oxford Univ. Press  (1992)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  T. Józefiak,  "Characters of projective representations of symmetric groups"  ''Exp. Math.'' , '''7'''  (1989)  pp. 193–247</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D.E. Littlewood,  "On certain symmetric functions"  ''Proc. London Math. Soc.'' , '''11''' :  3  (1961)  pp. 485–498</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I.G. Macdonald,  "Symmetric functions and Hall polynomials" , Oxford Univ. Press  (1997)  (Edition: Second)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.E. Sagan,  "Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley"  ''J. Combin. Th. A'' , '''45'''  (1987)  pp. 62–103</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  I. Schur,  "Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen"  ''J. Reine Angew. Math.'' , '''139'''  (1911)  pp. 155–250</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  J.R. Stembridge,  "Shifted tableaux and projective representations of symmetric groups"  ''Adv. Math.'' , '''74'''  (1989)  pp. 87–134</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  P.N. Hoffman,  J.F. Humphreys,  "Projective representations of the symmetric groups" , Oxford Univ. Press  (1992)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  T. Józefiak,  "Characters of projective representations of symmetric groups"  ''Exp. Math.'' , '''7'''  (1989)  pp. 193–247</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  D.E. Littlewood,  "On certain symmetric functions"  ''Proc. London Math. Soc.'' , '''11''' :  3  (1961)  pp. 485–498</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  I.G. Macdonald,  "Symmetric functions and Hall polynomials" , Oxford Univ. Press  (1997)  (Edition: Second)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  B.E. Sagan,  "Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley"  ''J. Combin. Th. A'' , '''45'''  (1987)  pp. 62–103</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  I. Schur,  "Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen"  ''J. Reine Angew. Math.'' , '''139'''  (1911)  pp. 155–250</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  J.R. Stembridge,  "Shifted tableaux and projective representations of symmetric groups"  ''Adv. Math.'' , '''74'''  (1989)  pp. 87–134</td></tr></table>

Revision as of 16:59, 1 July 2020

A symmetric function introduced by I. Schur [a6] in 1911 in the construction of the irreducible spin characters of the symmetric groups $S _ { n }$ (cf. Projective representations of symmetric and alternating groups). Schur $Q$-functions are analogous to the Schur functions, which play the same role for linear characters (cf. Schur functions in algebraic combinatorics). In fact, both are special cases of Hall–Littlewood functions discovered by D.E. Littlewood [a3], but see [a4] for a description of their development and subsequent generalizations, for example, Macdonald polynomials.

There are by now (as of 2000) several other definitions; the original by Schur [a6] was in terms of Pfaffians (cf. Pfaffian), a modern version of his work is [a2]. Let $\mathbf{x} = \{ x _ { 1 } , \dots , x _ { l } \}$ be a set of variables ($l \geq n$); then

\begin{equation} \tag{a1} Q ( t ) = \prod _ { i } \frac { 1 + x _ { i } t } { 1 - x _ { i } t } = \sum _ { r \geq 0 } q _ { r } t ^ { r }. \end{equation}

For $r , s \geq 0$, define

\begin{equation*} Q_{( r , s )} = q_ r q _ { s } + 2 \sum _ { i = 1 } ^ { s } ( - 1 ) ^ { i } q_{r + i} q _ { s - i}, \end{equation*}

and then $Q _ { ( s , r ) } = - Q _ { ( r , s ) }$, because $\sum _ { i = 0 } ^ { n } ( - 1 ) ^ { i } q _ { i } q _ { n - i } = 0$, as follows directly from (a1).

If $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { 2 m } )$ is a strict partition of $n$, where $\lambda _ { 1 } > \ldots > \lambda _ { 2 m } \geq 0$, then the matrix

\begin{equation*} M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } \rangle } ) \end{equation*}

is skew-symmetric, and the Schur $Q$-function $Q_\lambda$ is defined as

\begin{equation*} Q _ { \lambda } = \operatorname { Pf } ( M _ { \lambda } ), \end{equation*}

where $\text{Pf}$ stands for the Pfaffian.

An alternative purely combinatorial definition has been given by J.R. Stembridge [a7] in terms of shifted (Young) diagrams. These differ from Young diagrams (cf. Young diagram) in that there is an indentation along the diagonal. Young tableaux are replaced by marked shifted tableaux which are defined as follows. Let $P ^ { \prime }$ denote the ordered alphabet $\{ 1 ^ { \prime } < 1 < 2 ^ { \prime } < 2 < \ldots \}$; then a marked shifted tableau $T$ is a labelling of the nodes of the shifted diagram of shape $\lambda$ such that

i) the labels weakly increase along each row and down each column;

ii) each column contains at most one $k$, for each $k \geq 1$; and

iii) each row contains at most one $k ^ { \prime }$, for each $k \geq 1$. If $\gamma _ { k }$ denotes the number of nodes labelled either $k$ or $k ^ { \prime }$, then $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ is the content of $T$ and if $x ^ { T } = x _ { 1 } ^ { \gamma _ { 1 } } x _ { 2 } ^ { \gamma _ { 2 } } \dots$, then

\begin{equation*} Q _ { \lambda } = \sum _ { T } x ^ { T } , \end{equation*}

summed over all marked shifted tableaux of shape $\lambda$. It is a non-trivial task to prove that this is the Schur $Q$-function. For example, if $\lambda = ( 4,2,1 )$, then the corresponding shifted diagram and a possible marked shifted tableau are

\begin{equation*} \lambda = \left. \begin{array} { l l l } { \bullet } & { \bullet } & { \bullet } & { \bullet } \\ { \square } & { \bullet } & { \bullet } & { \square } \\ { \square } & { \square } & { \bullet } & { \square } \end{array} \right. \end{equation*}

and $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$.

This combinatorial definition has been a rich source of significant combinatorial results, for example, Stembridge [a7] has proved an analogue of the Littlewood–Richardson rule that describes the Schur $Q$-function expansion of $Q _ {\lambda} Q _ { \mu }$ and also gives a purely combinatorial proof for the Murnaghan–Nakayama rule for computing the irreducible spin characters of $S _ { n }$ (cf. Representation of the symmetric groups). All of this is based on a shifted version of the Robinson–Schensted–Knuth correspondence given independently by B.E. Sagan [a5] and D.R. Rowley (cf. also Robinson–Schensted correspondence).

Schur $Q$-functions also arise naturally in other contexts, for example, the characters of irreducible representations of the queer Lie super-algebra $Q ( n )$, the cohomology classes dual to Schubert cycles in isotropic Grassmannians and in polynomial solutions of the BKP-hierarchy of partial differential equations.

References

[a1] P.N. Hoffman, J.F. Humphreys, "Projective representations of the symmetric groups" , Oxford Univ. Press (1992)
[a2] T. Józefiak, "Characters of projective representations of symmetric groups" Exp. Math. , 7 (1989) pp. 193–247
[a3] D.E. Littlewood, "On certain symmetric functions" Proc. London Math. Soc. , 11 : 3 (1961) pp. 485–498
[a4] I.G. Macdonald, "Symmetric functions and Hall polynomials" , Oxford Univ. Press (1997) (Edition: Second)
[a5] B.E. Sagan, "Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley" J. Combin. Th. A , 45 (1987) pp. 62–103
[a6] I. Schur, "Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen" J. Reine Angew. Math. , 139 (1911) pp. 155–250
[a7] J.R. Stembridge, "Shifted tableaux and projective representations of symmetric groups" Adv. Math. , 74 (1989) pp. 87–134
How to Cite This Entry:
Schur Q-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_Q-function&oldid=13902
This article was adapted from an original article by A.O. Morris (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article