Namespaces
Variants
Actions

Schläfli integral

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An integral representation of the Bessel functions for any $ n $:

$$ \tag{* } J _ {n} ( z) = \frac{1} \pi \int\limits _ { 0 } ^ \pi \cos ( n \theta - z \sin \theta ) d \theta + $$

$$ - \frac{\sin n \pi } \pi \int\limits _ { 0 } ^ \infty e ^ {- n \theta - z \sinh \theta } d \theta , $$

when $ \mathop{\rm Re} z > 0 $. It is valid for all integer $ n $. Formula (*) can be derived from

$$ J _ {n} = \frac{z ^ {n} }{2 ^ {\pi + 1 } \pi i } \int\limits _ {- \infty } ^ { ( } 0+) t ^ {-} n- 1 \mathop{\rm exp} \left ( t - \frac{z ^ {2} }{4t} \right ) dt. $$

Formula (*) was first given by L. Schläfli .

An integral representation of the Legendre polynomials:

$$ P _ {n} ( z) = \frac{1}{2 \pi i } \int\limits _ { C } \frac{( t ^ {2} - 1) ^ {n} }{2 ^ {n} ( t- z) ^ {n+} 1 } dt, $$

where $ C $ is a contour making one counter-clockwise turn around $ z $. This representation was first given by L. Schläfli [2].

References

[1] L. Schläfli, "Eine Bemerkung zu Herrn Neumanns Untersuchungen über die Besselschen Funktionen" Math. Ann. , 3 : 1 (1871) pp. 134–149
[2] L. Schläfli, "Über die zwei Heine'schen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale" , H. Koerber , Berlin (1881)
[3] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6
[4] A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)

Comments

The reduction of the Schläfli integral to the second integral representation for $ J _ {n} ( z) $ is valid for unrestricted values of $ n $( see also [a3], 6.2

and ). The integral representation for the Legendre polynomials follows from the Rodrigues formula, similarly as for the Jacobi polynomials (cf. [a2], (4.4.6) and (4.8.1)).

References

[a1] F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974)
[a2] G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)
[a3] G.N. Watson, "A treatise on the theory of Bessel functions" , 1 , Cambridge Univ. Press (1952)
How to Cite This Entry:
Schläfli integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schl%C3%A4fli_integral&oldid=48619
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article