Namespaces
Variants
Actions

Radon-Nikodým theorem

From Encyclopedia of Mathematics
Revision as of 22:33, 29 July 2012 by Jjg (talk | contribs) (moved subhead above MSC)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

generalized measure, real valued measure

2020 Mathematics Subject Classification: Primary: 28A33 [MSN][ZBL] $\newcommand{\abs}[1]{\left|#1\right|}$

A classical theorem in measure theory first established by J. Radon and O.M. Nikodym, which has the following statement.

Let $\mathcal{B}$ be a $\sigma$-algebra of subsets of a set $X$ and let $\mu$ and $\nu$ be two measures on $\mathcal{B}$. If $\nu$ is absolutely continuous with respect to $\mu$, i.e. $\nu (A)=0$ whenever $\mu (A) = 0$, then there is a $\mathcal{B}$-measurable nonnegative function $f$ such that \begin{equation}\label{e:R-N} \nu (B) = \int_B f\, d\mu \qquad \forall B\in \mathcal{B}\, . \end{equation} The function $f$ is uniquely determined up to sets of $\mu$-measure zero. The theorem can be generalized to signed measures, $\mathbb C$-valued measures and, more in general, vector-valued measures (see Signed measure). More precisely, let $\mu$ be a (nonnegative real-valued) measure on $\mathcal{B}$, $V$ be a finite-dimensional vector-space and $\nu:\mathcal{B}\to V$ a $\sigma$-additive function such that $\nu (A) = 0$ whenever $\mu (A) =0$. Then there is a function $f\in L^1 (\mu, V)$ such that \ref{e:R-N} hold. See also Vector measure for more general statements.

References

[AmFuPa] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001
[Bo] N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001
[DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523
[Bi] P. Billingsley, "Convergence of probability measures" , Wiley (1968) MR0233396 Zbl 0172.21201
[He] E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)
[Ma] P. Mattila, "Geometry of sets and measures in euclidean spaces". Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005
[Ni] O. M. Nikodym, "Sur une généralisation des intégrales de M. J. Radon". Fund. Math. , 15 (1930) pp. 131–179
[Ra] J. Radon, "Ueber lineare Funktionaltransformationen und Funktionalgleichungen",

Sitzungsber. Acad. Wiss. Wien , 128 (1919) pp. 1083–1121

How to Cite This Entry:
Radon-Nikodým theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Radon-Nikod%C3%BDm_theorem&oldid=27238
This article was adapted from an original article by R.A. Minlos (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article