Namespaces
Variants
Actions

Difference between revisions of "Raabe criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
Line 1: Line 1:
 +
{{TEX|done}}
 +
 
''on the convergence of a series of numbers''
 
''on the convergence of a series of numbers''
  
A series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770101.png" /> converges if for sufficiently large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770102.png" /> the inequality
+
A series $\sum_{n=1}^{\infty}a_n$ converges if for sufficiently large $n$ the inequality
 
+
\begin{equation}
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770103.png" /></td> </tr></table>
+
R_n = n\left(\frac{a_n}{a_{n+1}}-1\right)\geq r>1
 
+
\end{equation}
is fulfilled. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770104.png" /> from some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770105.png" /> onwards, then the series diverges.
+
is fulfilled. If $R_n\leq 1$ from some $n$ onwards, then the series diverges.
  
 
Proved by J. Raabe
 
Proved by J. Raabe
 
 
 
====Comments====
 
  
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)</TD></TR></table>

Revision as of 09:57, 13 December 2012


on the convergence of a series of numbers

A series $\sum_{n=1}^{\infty}a_n$ converges if for sufficiently large $n$ the inequality \begin{equation} R_n = n\left(\frac{a_n}{a_{n+1}}-1\right)\geq r>1 \end{equation} is fulfilled. If $R_n\leq 1$ from some $n$ onwards, then the series diverges.

Proved by J. Raabe


References

[a1] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
How to Cite This Entry:
Raabe criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Raabe_criterion&oldid=29180
This article was adapted from an original article by E.G. Sobolevskaya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article