Namespaces
Variants
Actions

Difference between revisions of "Quotient group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m (tex,mr,zbl,msc)
 
Line 1: Line 1:
''of a group $G$ by a normal subgroup $N$
+
{{MSC|20}}
 +
{{TEX|done}}
  
The group formed by the cosets (cf. [[Coset in a group|Coset in a group]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768803.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768804.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768805.png" />; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768806.png" /> (cf. [[Normal subgroup|Normal subgroup]]). Multiplication of cosets is performed according to the formula
+
The ''quotient group'' of a group $G$ by a normal subgroup $N$ is
 +
the group formed by the cosets (cf. [[Coset in a group|Coset in a group]]) $Ng$, $g\in G$, of $G$; it is denoted by $G/N$ (cf. [[Normal subgroup|Normal subgroup]]). Multiplication of cosets is performed according to the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768807.png" /></td> </tr></table>
+
$$Ng_1\; Ng_2 = Ng_1g_2.$$
  
The unit of the quotient group is the coset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768808.png" />, and the inverse of the coset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768809.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688010.png" />.
+
The unit of the quotient group is the coset $N = N\;e$, and the inverse of the coset $Ng$ is $Ng^{-1}$.
  
The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688011.png" /> is a group epimorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688012.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688013.png" />, called the canonical epimorphism or natural epimorphism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688014.png" /> is an arbitrary epimorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688015.png" /> onto a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688016.png" />, then the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688018.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688019.png" />, and the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688020.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688021.png" />; more precisely, there is an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688023.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688024.png" /> such that the diagram
+
The mapping $\def\k{\kappa}\k : g\mapsto Ng$ is a group epimorphism of $G$ onto $G/N$, called the canonical epimorphism or natural epimorphism.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688025.png" /></td> </tr></table>
+
If $\def\phi{\varphi}\phi:G\to G'$ is an arbitrary epimorphism of $G$ onto a group $G'$, then the kernel $K$ of $\phi$ is a normal subgroup of $G$, and the quotient group $G/K$ is isomorphic to $G'$; more precisely, there is an isomorphism $\psi$ of $G/K$ onto $G'$ such that the diagram
  
is commutative, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688026.png" /> is the natural epimorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688027.png" />.
+
$$\begin{matrix} G & \stackrel{\phi}\rightarrow & G'\\ & \kern-3pt\llap{\scriptstyle\kappa}\searrow & \uparrow\rlap{\scriptstyle\psi} \\ && G/K\end{matrix}$$
 +
is commutative, where $\k$ is the natural epimorphism $G\to G/K$.
  
A quotient group of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688028.png" /> can be defined, starting from some congruence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688029.png" /> (cf. [[Congruence (in algebra)|Congruence (in algebra)]]), as the set of classes of congruent elements relative to multiplication of classes. All possible congruences on a group are in one-to-one correspondence with its normal subgroups, and the quotient groups by the congruences are the same as those by the normal subgroups. A quotient group is a normal quotient object in the category of groups.
+
A quotient group of a group $G$ can be defined, starting from some congruence on $G$ (cf. [[Congruence (in algebra)|Congruence (in algebra)]]), as the set of classes of congruent elements relative to multiplication of classes. All possible congruences on a group are in one-to-one correspondence with its normal subgroups, and the quotient groups by the congruences are the same as those by the normal subgroups. A quotient group is a normal quotient object in the category of groups.
  
  
  
====Comments====
+
====References====  
 
+
{|
 
+
|-
====References====
+
|valign="top"|{{Ref|Co}}||valign="top"| P.M. Cohn,  "Algebra", '''I''', Wiley  (1982)  pp. Sect. 9.1 {{MR|0663370}}  {{ZBL|0481.00001}}
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn,  "Algebra" , '''I''' , Wiley  (1982)  pp. Sect. 9.1</TD></TR></table>
+
|-
 +
|}

Latest revision as of 14:18, 22 June 2012

2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL]

The quotient group of a group $G$ by a normal subgroup $N$ is the group formed by the cosets (cf. Coset in a group) $Ng$, $g\in G$, of $G$; it is denoted by $G/N$ (cf. Normal subgroup). Multiplication of cosets is performed according to the formula

$$Ng_1\; Ng_2 = Ng_1g_2.$$

The unit of the quotient group is the coset $N = N\;e$, and the inverse of the coset $Ng$ is $Ng^{-1}$.

The mapping $\def\k{\kappa}\k : g\mapsto Ng$ is a group epimorphism of $G$ onto $G/N$, called the canonical epimorphism or natural epimorphism.

If $\def\phi{\varphi}\phi:G\to G'$ is an arbitrary epimorphism of $G$ onto a group $G'$, then the kernel $K$ of $\phi$ is a normal subgroup of $G$, and the quotient group $G/K$ is isomorphic to $G'$; more precisely, there is an isomorphism $\psi$ of $G/K$ onto $G'$ such that the diagram

$$\begin{matrix} G & \stackrel{\phi}\rightarrow & G'\\ & \kern-3pt\llap{\scriptstyle\kappa}\searrow & \uparrow\rlap{\scriptstyle\psi} \\ && G/K\end{matrix}$$ is commutative, where $\k$ is the natural epimorphism $G\to G/K$.

A quotient group of a group $G$ can be defined, starting from some congruence on $G$ (cf. Congruence (in algebra)), as the set of classes of congruent elements relative to multiplication of classes. All possible congruences on a group are in one-to-one correspondence with its normal subgroups, and the quotient groups by the congruences are the same as those by the normal subgroups. A quotient group is a normal quotient object in the category of groups.


References

[Co] P.M. Cohn, "Algebra", I, Wiley (1982) pp. Sect. 9.1 MR0663370 Zbl 0481.00001
How to Cite This Entry:
Quotient group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quotient_group&oldid=27032
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article