Namespaces
Variants
Actions

Difference between revisions of "Quadratic reciprocity law"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
The relation
 
The relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761301.png" /></td> </tr></table>
+
$$\left(\frac pq\right)\left(\frac pq\right)=(-1)^{(p-1)/2\cdot(q-1)/2},$$
  
 
connecting the Legendre symbols (cf. [[Legendre symbol|Legendre symbol]])
 
connecting the Legendre symbols (cf. [[Legendre symbol|Legendre symbol]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761302.png" /></td> </tr></table>
+
$$\left(\frac pq\right)\quad\text{and}\quad\left(\frac qp\right)$$
  
for different odd prime numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761303.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761304.png" />. There are two additions to this quadratic reciprocity law, namely:
+
for different odd prime numbers $p$ and $q$. There are two additions to this quadratic reciprocity law, namely:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761305.png" /></td> </tr></table>
+
$$\left(\frac{-1}{p}\right)=(-1)^{(p-1)/2}$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761306.png" /></td> </tr></table>
+
$$\left(\frac 2p\right)=(-1)^{(p^2-1)/8}.$$
  
 
C.F. Gauss gave the first complete proof of the quadratic reciprocity law, which for this reason is also called the [[Gauss reciprocity law|Gauss reciprocity law]].
 
C.F. Gauss gave the first complete proof of the quadratic reciprocity law, which for this reason is also called the [[Gauss reciprocity law|Gauss reciprocity law]].
  
It immediately follows from this law that for a given square-free number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761307.png" />, the primes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761308.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q0761309.png" /> is a quadratic residue modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613010.png" /> ly in certain arithmetic progressions with common difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613011.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613012.png" />. The number of these progressions is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613013.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613015.png" /> is the [[Euler function|Euler function]]. The quadratic reciprocity law makes it possible to establish factorization laws in quadratic extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613016.png" /> of the field of rational numbers, since the factorization into prime factors in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613017.png" /> of a prime number that does not divide <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613018.png" /> depends on whether or not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613019.png" /> is reducible modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076130/q07613020.png" />.
+
It immediately follows from this law that for a given square-free number $d$, the primes $p$ for which $d$ is a quadratic residue modulo $p$ ly in certain arithmetic progressions with common difference $2|d|$ or $4|d|$. The number of these progressions is $\phi(2|d|)/2$ or $\phi(4|d|)/2$, where $\phi(n)$ is the [[Euler function|Euler function]]. The quadratic reciprocity law makes it possible to establish factorization laws in quadratic extensions $\mathbf Q(\sqrt d)$ of the field of rational numbers, since the factorization into prime factors in $\mathbf Q(\sqrt d)$ of a prime number that does not divide $d$ depends on whether or not $x^2-d$ is reducible modulo $p$.
  
 
====References====
 
====References====

Latest revision as of 19:26, 14 August 2014

The relation

$$\left(\frac pq\right)\left(\frac pq\right)=(-1)^{(p-1)/2\cdot(q-1)/2},$$

connecting the Legendre symbols (cf. Legendre symbol)

$$\left(\frac pq\right)\quad\text{and}\quad\left(\frac qp\right)$$

for different odd prime numbers $p$ and $q$. There are two additions to this quadratic reciprocity law, namely:

$$\left(\frac{-1}{p}\right)=(-1)^{(p-1)/2}$$

and

$$\left(\frac 2p\right)=(-1)^{(p^2-1)/8}.$$

C.F. Gauss gave the first complete proof of the quadratic reciprocity law, which for this reason is also called the Gauss reciprocity law.

It immediately follows from this law that for a given square-free number $d$, the primes $p$ for which $d$ is a quadratic residue modulo $p$ ly in certain arithmetic progressions with common difference $2|d|$ or $4|d|$. The number of these progressions is $\phi(2|d|)/2$ or $\phi(4|d|)/2$, where $\phi(n)$ is the Euler function. The quadratic reciprocity law makes it possible to establish factorization laws in quadratic extensions $\mathbf Q(\sqrt d)$ of the field of rational numbers, since the factorization into prime factors in $\mathbf Q(\sqrt d)$ of a prime number that does not divide $d$ depends on whether or not $x^2-d$ is reducible modulo $p$.

References

[1] I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)
[2] Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)


Comments

See also Quadratic residue; Dirichlet character.

References

[a1] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapt. XIII
How to Cite This Entry:
Quadratic reciprocity law. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quadratic_reciprocity_law&oldid=13467
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article